Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Epilepsia ; 65(2): 266-280, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38036453

ABSTRACT

The devastating developmental and epileptic encephalopathy of infantile epileptic spasms syndrome (IESS) has numerous causes, including, but not limited to, brain injury, metabolic, and genetic conditions. Given the stereotyped electrophysiologic, age-dependent, and clinical findings, there likely exists one or more final common pathways in the development of IESS. The identity of this final common pathway is unknown, but it may represent a novel therapeutic target for infantile spasms. Previous research on IESS has focused largely on identifying the neuroanatomic substrate using specialized neuroimaging techniques and cerebrospinal fluid analysis in human patients. Over the past three decades, several animal models of IESS were created with an aim to interrogate the underlying pathogenesis of IESS, to identify novel therapeutic targets, and to test various treatments. Each of these models have been successful at recapitulating multiple aspects of the human IESS condition. These animal models have implicated several different molecular pathways in the development of infantile spasms. In this review we outline the progress that has been made thus far using these animal models and discuss future directions to help researchers identify novel treatments for drug-resistant IESS.


Subject(s)
Brain Injuries , Spasms, Infantile , Animals , Humans , Spasms, Infantile/drug therapy , Disease Models, Animal , Syndrome , Spasm
2.
NPJ Regen Med ; 8(1): 55, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37773257

ABSTRACT

In optic neuropathies, including glaucoma, retinal ganglion cells (RGCs) die. Cell transplantation and endogenous regeneration offer strategies for retinal repair, however, developmental programs required for this to succeed are incompletely understood. To address this, we explored cellular reprogramming with transcription factor (TF) regulators of RGC development which were integrated into human pluripotent stem cells (PSCs) as inducible gene cassettes. When the pioneer factor NEUROG2 was combined with RGC-expressed TFs (ATOH7, ISL1, and POU4F2) some conversion was observed and when pre-patterned by BMP inhibition, RGC-like induced neurons (RGC-iNs) were generated with high efficiency in just under a week. These exhibited transcriptional profiles that were reminiscent of RGCs and exhibited electrophysiological properties, including AMPA-mediated synaptic transmission. Additionally, we demonstrated that small molecule inhibitors of DLK/LZK and GCK-IV can block neuronal death in two pharmacological axon injury models. Combining developmental patterning with RGC-specific TFs thus provided valuable insight into strategies for cell replacement and neuroprotection.

3.
Epilepsia ; 64(8): 2186-2199, 2023 08.
Article in English | MEDLINE | ID: mdl-37209379

ABSTRACT

OBJECTIVE: KCNA1 mutations are associated with a rare neurological movement disorder known as episodic ataxia type 1 (EA1), and epilepsy is a common comorbidity. Current medications provide only partial relief for ataxia and/or seizures, making new drugs needed. Here, we characterized zebrafish kcna1a-/- as a model of EA1 with epilepsy and compared the efficacy of the first-line therapy carbamazepine in kcna1a-/- zebrafish to Kcna1-/- rodents. METHODS: CRISPR/Cas9 mutagenesis was used to introduce a mutation in the sixth transmembrane segment of the zebrafish Kcna1 protein. Behavioral and electrophysiological assays were performed on kcna1a-/- larvae to assess ataxia- and epilepsy-related phenotypes. Real-time quantitative polymerase chain reaction (qPCR) was conducted to measure mRNA levels of brain hyperexcitability markers in kcna1a-/- larvae, followed by bioenergetics profiling to evaluate metabolic function. Drug efficacies were tested using behavioral and electrophysiological assessments, as well as seizure frequency in kcna1a-/- zebrafish and Kcna1-/- mice, respectively. RESULTS: Zebrafish kcna1a-/- larvae showed uncoordinated movements and locomotor deficits, along with scoliosis and increased mortality. The mutants also exhibited impaired startle responses when exposed to light-dark flashes and acoustic stimulation as well as hyperexcitability as measured by extracellular field recordings and upregulated fosab transcripts. Neural vglut2a and gad1b transcript levels were disrupted in kcna1a-/- larvae, indicative of a neuronal excitatory/inhibitory imbalance, as well as a significant reduction in cellular respiration in kcna1a-/- , consistent with dysregulation of neurometabolism. Notably, carbamazepine suppressed the impaired startle response and brain hyperexcitability in kcna1a-/- zebrafish but had no effect on the seizure frequency in Kcna1-/- mice, suggesting that this EA1 zebrafish model might better translate to humans than rodents. SIGNIFICANCE: We conclude that zebrafish kcna1a-/- show ataxia and epilepsy-related phenotypes and are responsive to carbamazepine treatment, consistent with EA1 patients. These findings suggest that kcna1-/- zebrafish are a useful model for drug screening as well as studying the underlying disease biology.


Subject(s)
Epilepsy , Zebrafish , Humans , Mice , Animals , Ataxia/drug therapy , Ataxia/genetics , Ataxia/complications , Seizures/complications , Carbamazepine/pharmacology , Carbamazepine/therapeutic use , Kv1.1 Potassium Channel/genetics
4.
Cannabis Cannabinoid Res ; 8(2): 283-298, 2023 04.
Article in English | MEDLINE | ID: mdl-36108318

ABSTRACT

Background: The mechanisms underlying the clinical effects of CBD remain poorly understood. Given the increasing evidence for CBD's effects on mitochondria, we sought to examine in more detail whether CBD impacts mitochondrial function and neuronal integrity. Methods: We utilized BE(2)-M17 neuroblastoma cells or acutely isolated brain mitochondria from rodents using a Seahorse extracellular flux analyzer and a fluorescent spectrofluorophotometer assay. Mitochondrial ion channel activity and hippocampal long-term potentiation were measured using standard cellular electrophysiological methods. Spatial learning/memory function was evaluated using the Morris water maze task. Plasma concentrations of CBD were assessed with liquid chromatography-mass spectrometry, and cellular viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction neuronal injury assay. Results: At low micromolar concentrations, CBD reduced mitochondrial respiration, the threshold for mitochondrial permeability transition, and calcium uptake, blocked a novel mitochondrial chloride channel, and reduced the viability of hippocampal cells. These effects were paralleled by in vitro and in vivo learning/memory deficits. We further found that these effects were independent of cannabinoid receptor 1 and mitochondrial G-protein-coupled receptor 55. Conclusion: Our results provide evidence for concentration- and dose-dependent toxicological effects of CBD, findings that may bear potential relevance to clinical populations.


Subject(s)
Brain , Cannabidiol , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Cannabidiol/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/drug effects , Neurons/physiology , Animals , Morris Water Maze Test , Male , Mice , Rats , Rats, Wistar
5.
Cereb Cortex Commun ; 2(1): tgaa096, 2021.
Article in English | MEDLINE | ID: mdl-33615226

ABSTRACT

Dysfunction of nuclear distribution element-like 1 (Ndel1) is associated with schizophrenia, a neuropsychiatric disorder characterized by cognitive impairment and with seizures as comorbidity. The levels of Ndel1 are also altered in human and models with epilepsy, a chronic condition whose hallmark feature is the occurrence of spontaneous recurrent seizures and is typically associated with comorbid conditions including learning and memory deficits, anxiety, and depression. In this study, we analyzed the behaviors of mice postnatally deficient for Ndel1 in forebrain excitatory neurons (Ndel1 CKO) that exhibit spatial learning and memory deficits, seizures, and shortened lifespan. Ndel1 CKO mice underperformed in species-specific tasks, that is, the nest building, open field, Y maze, forced swim, and dry cylinder tasks. We surveyed the expression and/or activity of a dozen molecules related to Ndel1 functions and found changes that may contribute to the abnormal behaviors. Finally, we tested the impact of Reelin glycoprotein that shows protective effects in the hippocampus of Ndel1 CKO, on the performance of the mutant animals in the nest building task. Our study highlights the importance of Ndel1 in the manifestation of species-specific animal behaviors that may be relevant to our understanding of the clinical conditions shared between neuropsychiatric disorders and epilepsy.

6.
J Inherit Metab Dis ; 44(1): 42-53, 2021 01.
Article in English | MEDLINE | ID: mdl-32654164

ABSTRACT

Metabolic epilepsies arise in the context of rare inborn errors of metabolism (IEM), notably glucose transporter type 1 deficiency syndrome, succinic semialdehyde dehydrogenase deficiency, pyruvate dehydrogenase complex deficiency, nonketotic hyperglycinemia, and mitochondrial cytopathies. A common feature of these disorders is impaired bioenergetics, which through incompletely defined mechanisms result in a wide spectrum of neurological symptoms, such as epileptic seizures, developmental delay, and movement disorders. The ketogenic diet (KD) has been successfully utilized to treat such conditions to varying degrees. While the mechanisms underlying the clinical efficacy of the KD in IEM remain unclear, it is likely that the proposed heterogeneous targets influenced by the KD work in concert to rectify or ameliorate the downstream negative consequences of genetic mutations affecting key metabolic enzymes and substrates-such as oxidative stress and cell death. These beneficial effects can be broadly grouped into restoration of impaired bioenergetics and synaptic dysfunction, improved redox homeostasis, anti-inflammatory, and epigenetic activity. Hence, it is conceivable that the KD might prove useful in other metabolic disorders that present with epileptic seizures. At the same time, however, there are notable contraindications to KD use, such as fatty acid oxidation disorders. Clearly, more research is needed to better characterize those metabolic epilepsies that would be amenable to ketogenic therapies, both experimentally and clinically. In the end, the expanded knowledge base will be critical to designing metabolism-based treatments that can afford greater clinical efficacy and tolerability compared to current KD approaches, and improved long-term outcomes for patients.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diet therapy , Diet, Ketogenic , Epilepsy/diet therapy , Ketone Bodies/biosynthesis , Animals , Contraindications , Energy Metabolism , Humans , Ketone Bodies/therapeutic use , Treatment Outcome
7.
Cereb Cortex Commun ; 1(1): tgaa024, 2020.
Article in English | MEDLINE | ID: mdl-32864616

ABSTRACT

Mutations in cytoskeletal proteins can cause early infantile and childhood epilepsies by misplacing newly born neurons and altering neuronal connectivity. In the adult epileptic brain, cytoskeletal disruption is often viewed as being secondary to aberrant neuronal activity and/or death, and hence simply represents an epiphenomenon. Here, we review the emerging evidence collected in animal models and human studies implicating the cytoskeleton as a potential causative factor in adult epileptogenesis. Based on the emerging evidence, we propose that cytoskeletal disruption may be an important pathogenic mechanism in the mature epileptic brain.

8.
Cereb Cortex ; 30(9): 4964-4978, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32328622

ABSTRACT

The glycoprotein Reelin maintains neuronal positioning and regulates neuronal plasticity in the adult brain. Reelin deficiency has been associated with neurological diseases. We recently showed that Reelin is depleted in mice with a targeted disruption of the Ndel1 gene in forebrain postnatal excitatory neurons (Ndel1 conditional knockout (CKO)). Ndel1 CKO mice exhibit fragmented microtubules in CA1 pyramidal neurons, profound deterioration of the CA1 hippocampus and a shortened lifespan (~10 weeks). Here we report that Ndel1 CKO mice (of both sexes) experience spatial learning and memory deficits that are associated with deregulation of neuronal cell adhesion, plasticity and neurotransmission genes, as assessed by genome-wide transcriptome analysis of the hippocampus. Importantly, a single injection of Reelin protein in the hippocampus of Ndel1 CKO mice improves spatial learning and memory function and this is correlated with reduced intrinsic hyperexcitability of CA1 pyramidal neurons, and normalized gene deregulation in the hippocampus. Strikingly, when treated with Reelin, Ndel1 CKO animals that die from an epileptic phenotype, live twice as long as nontreated, or vehicle-treated CKO animals. Thus, Reelin confers striking beneficial effects in the CA1 hippocampus, and at both behavioral and organismal levels.


Subject(s)
CA1 Region, Hippocampal/pathology , Carrier Proteins/genetics , Longevity/drug effects , Reelin Protein/pharmacology , Animals , CA1 Region, Hippocampal/drug effects , Cognition/drug effects , Female , Longevity/genetics , Male , Memory Disorders/genetics , Mice , Mice, Knockout , Mutation , Spatial Learning/drug effects
9.
Brain ; 141(3): 744-761, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29373639

ABSTRACT

Despite the development of newer anti-seizure medications over the past 50 years, 30-40% of patients with epilepsy remain refractory to treatment. One explanation for this lack of progress is that the current screening process is largely biased towards transmembrane channels and receptors, and ignores intracellular proteins and enzymes that might serve as efficacious molecular targets. Here, we report the development of a novel drug screening platform that harnesses the power of zebrafish genetics and combines it with in vivo bioenergetics screening assays to uncover therapeutic agents that improve mitochondrial health in diseased animals. By screening commercially available chemical libraries of approved drugs, for which the molecular targets and pathways are well characterized, we were able to reverse-identify the proteins targeted by efficacious compounds and confirm the physiological roles that they play by utilizing other pharmacological ligands. Indeed, using an 870-compound screen in kcna1-morpholino epileptic zebrafish larvae, we uncovered vorinostat (Zolinza™; suberanilohydroxamic acid, SAHA) as a potent anti-seizure agent. We further demonstrated that vorinostat decreased average daily seizures by ∼60% in epileptic Kcna1-null mice using video-EEG recordings. Given that vorinostat is a broad histone deacetylase (HDAC) inhibitor, we then delineated a specific subset of HDACs, namely HDACs 1 and 3, as potential drug targets for future screening. In summary, we have developed a novel phenotypic, metabolism-based experimental therapeutics platform that can be used to identify new molecular targets for future drug discovery in epilepsy.


Subject(s)
Histone Deacetylases/metabolism , Seizures/metabolism , Seizures/therapy , Animals , Animals, Genetically Modified , Anticonvulsants/therapeutic use , Disease Models, Animal , Drug Delivery Systems , Drug Evaluation, Preclinical , Electroshock/adverse effects , Embryo, Nonmammalian , Energy Metabolism/drug effects , Energy Metabolism/genetics , Histone Deacetylase Inhibitors/therapeutic use , Kv1.1 Potassium Channel/genetics , Kv1.1 Potassium Channel/metabolism , Mice , Morpholinos , Pentylenetetrazole/toxicity , Psychomotor Performance/physiology , Seizures/etiology , Seizures/genetics , Vorinostat/therapeutic use , Zebrafish
10.
J Neurosci ; 36(24): 6538-52, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27307241

ABSTRACT

UNLABELLED: How the integrity of laminar structures in the postnatal brain is maintained impacts neuronal functions. Ndel1, the mammalian homolog of NuDE from the filamentous fungus Aspergillus nidulans, is an atypical microtubule (MT)-associated protein that was initially investigated in the contexts of neurogenesis and neuronal migration. Constitutive knock-out mice for Ndel1 are embryonic lethal, thereby necessitating the creation a conditional knock-out to probe the roles of Ndel1 in postnatal brains. Here we report that CA1 pyramidal neurons from mice postnatally lacking Ndel1 (Ndel1 conditional knock-out) exhibit fragmented MTs, dendritic/synaptic pathologies, are intrinsically hyperexcitable and undergo dispersion independently of neuronal migration defect. Secondary to the pyramidal cell changes is the decreased inhibitory drive onto pyramidal cells from interneurons. Levels of the glycoprotein Reelin that regulates MTs, neuronal plasticity, and cell compaction are significantly reduced in hippocampus of mutant mice. Strikingly, a single injection of Reelin into the hippocampus of Ndel1 conditional knock-out mice ameliorates ultrastructural, cellular, morphological, and anatomical CA1 defects. Thus, Ndel1 and Reelin contribute to maintain postnatal CA1 integrity. SIGNIFICANCE STATEMENT: The significance of this study rests in the elucidation of a role for Nde1l and Reelin in postnatal CA1 integrity using a new conditional knock-out mouse model for the cytoskeletal protein Ndel1, one that circumvents the defects associated with neuronal migration and embryonic lethality. Our study serves as a basis for understanding the mechanisms underlying postnatal hippocampal maintenance and function, and the significance of decreased levels of Ndel1 and Reelin observed in patients with neurological disorders.


Subject(s)
CA1 Region, Hippocampal/growth & development , CA1 Region, Hippocampal/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Cell Cycle Proteins/metabolism , Extracellular Matrix Proteins/metabolism , Gene Expression Regulation, Developmental/physiology , Nerve Tissue Proteins/metabolism , Serine Endopeptidases/metabolism , Age Factors , Animals , Animals, Newborn , CA1 Region, Hippocampal/ultrastructure , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/pharmacology , Cell Cycle Proteins/genetics , Dendrites/metabolism , Dendrites/ultrastructure , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/pharmacology , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/genetics , Glutamate Decarboxylase/metabolism , In Vitro Techniques , Membrane Potentials/drug effects , Membrane Potentials/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/pharmacology , Neurons/drug effects , Neurons/metabolism , Neurotransmitter Agents/pharmacology , Reelin Protein , Serine Endopeptidases/genetics , Serine Endopeptidases/pharmacology , Silver Staining , Synapses/metabolism , Synapses/ultrastructure
11.
J Neurochem ; 126(5): 651-61, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23796540

ABSTRACT

Here, we explore the mechanism of action of isoxylitone (ISOX), a molecule discovered in the plant Delphinium denudatum, which has been shown to have anticonvulsant properties. Patch-clamp electrophysiology assayed the activity of ISOX on voltage-gated sodium channels (VGSCs) in both cultured neurons and brain slices isolated from controls and rats with experimental epilepsy(kindling model). Quantitative transcription polymerase chain reaction (qRT-PCR) (QPCR) assessed brain-derived neurotrophic factor (BDNF) mRNA expression in kindled rats, and kindled rats treated with ISOX. ISOX suppressed sodium current (I(Na)) showing an IC50 value of 185 nM in cultured neurons. ISOX significantly slowed the recovery from inactivation (ISOX τ = 18.7 ms; Control τ = 9.4 ms; p < 0.001). ISOX also enhanced the development of inactivation by shifting the Boltzmann curve to more hyperpolarized potentials by -11.2 mV (p < 0.05). In naive and electrically kindled cortical neurons, the IC50 for sodium current block was identical to that found in cultured neurons. ISOX prevented kindled stage 5 seizures and decreased the enhanced BDNF mRNA expression that is normally associated with kindling (p < 0.05). Overall, our data show that ISOX is a potent inhibitor of VGSCs that stabilizes steady-state inactivation while slowing recovery and enhancing inactivation development. Like many other sodium channel blocker anti-epileptic drugs, the suppression of BDNF mRNA expression that usually occurs with kindling is likely a secondary outcome that nevertheless would suppress epileptogenesis. These data show a new class of anti-seizure compound that inhibits sodium channel function and prevents the development of epileptic seizures.


Subject(s)
Anticonvulsants/pharmacology , Cyclohexenes/pharmacology , Ketones/pharmacology , Kindling, Neurologic/drug effects , Seizures/prevention & control , Sodium Channels/drug effects , Animals , Brain-Derived Neurotrophic Factor/biosynthesis , Brain-Derived Neurotrophic Factor/genetics , Cells, Cultured , Cyclohexenes/chemistry , Delphinium/chemistry , Dose-Response Relationship, Drug , Electrodes, Implanted , Electrophysiological Phenomena , Isomerism , Ketones/chemistry , Male , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Seizures/physiopathology
12.
Neurobiol Dis ; 48(3): 317-28, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22801084

ABSTRACT

Interneuronal functional diversity is thought to be an important factor in the control of neural network oscillations in many brain regions. Specifically, interneuron action potential firing patterns are thought to modulate brain rhythms. In neurological disorders such as epilepsy where brain rhythms are significantly disturbed interneuron function is largely unexplored. Thus the purpose of this study was to examine the functional diversity of piriform cortex interneurons (PC; an area of the brain that easily supports seizures) before and after kindling-induced epilepsy. Using cluster analysis, we found five control firing behaviors. These groups were termed: non-adapting very high frequency (NAvHF), adapting high frequency (AHF), adapting low frequency (ALF), strongly adapting low frequency (sALF), and weakly adapting low frequency (wALF). A morphological analysis showed these spiking patterns were not associated with any specific interneuronal morphology although we found that most of the cells displaying NAvHF firing pattern were multipolar. After kindling about 40% of interneuronal firing pattern changed, and neither the NAvHF nor the wALF phenotypes were found. We also found that in multipolar interneurons a long-lasting potassium current was increased. A qPCR analysis indicated Kv1.6 subtype was up-regulated after kindling. An immunocytochemical analysis showed that Kv1.6 protein expression on parvalbumin (multipolar) interneurons increased by greater than 400%. We also examined whether these changes could be due to the selective death of a subset of interneurons but found that there was no change in cell number. These data show an important loss of the functional diversity of interneurons in the PC. Our data suggest that under pathophysiological condition interneurons are plastic resulting in the attenuation of high frequency network oscillations in favor of low frequency network activity. This may be an important new mechanism by which network synchrony is disturbed in epileptic seizures.


Subject(s)
Epilepsy/physiopathology , Interneurons/physiology , Limbic System/physiopathology , Animals , Cluster Analysis , Disease Models, Animal , Immunohistochemistry , Kindling, Neurologic , Male , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley
13.
J Neurochem ; 116(6): 1043-56, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21175618

ABSTRACT

We have previously shown that after kindling (a model of temporal lobe epilepsy), the neuroactive steroid tetrahydrodeoxycorticosterone (THDOC) was unable to augment GABA type A receptor (GABA(A))-mediated synaptic currents occurring on pyramidal cells of the piriform cortex. Phosphorylation of GABA(A) receptors has been shown previously to alter the activity of THDOC, so we tested the hypothesis that kindling induces changes in the phosphorylation of GABA(A) receptors and this accounts for the loss in efficacy. To assay whether GABA(A) receptors are more phosphorylated after kindling, we examined the phosphorylation state of the ß3 subunit and found that it was increased. Incubation of brain slices with the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) (100 nM) also increased phosphorylation in the same assay. In patch clamp, recordings from non-kindled rat brain slices PMA also reduced the activity of THDOC in a manner that was identical to what is observed after kindling. We also found that the tonic current was no longer augmented by THODC after kindling and PMA treatment. The protein kinase C (PKC) antagonist bisindolylmaleimide I blocked the effects PMA on the synaptic but not the tonic currents. However, the broad spectrum PKC antagonist staurosporine blocked the effects of PMA on the tonic currents, implying that different PKC isoforms phosphorylate GABA(A) receptors responsible for phasic and tonic currents. The phosphatase activator Li(+) palmitate restored the 'normal' activity of THDOC on synaptic currents in kindled brain slices but not the tonic currents. These data demonstrate that kindling enhances the phosphorylation state of GABA(A) receptors expressed in pyramidal neurons reducing THDOC efficacy.


Subject(s)
Desoxycorticosterone/analogs & derivatives , Inhibitory Postsynaptic Potentials/drug effects , Kindling, Neurologic/pathology , Neurotransmitter Agents/pharmacology , Pyramidal Cells/drug effects , Receptors, GABA/metabolism , Animals , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Desoxycorticosterone/pharmacology , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , In Vitro Techniques , Indoles/pharmacology , Male , Maleimides/pharmacology , Patch-Clamp Techniques/methods , Phorbol Esters/pharmacology , Phosphorylation/drug effects , Phosphorylation/physiology , Rats , Rats, Sprague-Dawley , Receptors, GABA/genetics
14.
J Comp Neurol ; 518(9): 1570-88, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20187146

ABSTRACT

Previous studies have suggested that the patterns of innervation and high interconnectivity of the piriform cortex (PC) provide for strong olfactory hippocampal memory; however, these same attributes may create high seizurogenic tendencies. Thus, understanding this wiring is important from a physiological and pathophysiological perspective. Distinct interneurons expressing differing calcium binding proteins (CBPs), parvalbumin (PV), calbindin (CB), and calretinin (CR), have been shown to exist in PC. However, a comprehensive examination of the distribution and innervation patterns of these neurons has not been done. Thus the purpose of this study was to combine the analysis of the CBP cell localization with analysis of their innervation patterns. Each type was differentially localized in the three layers of the PC. Only CR-positive neurons were found in layer 1. PV and CB are coexpressed in layers 2-3, most expressing both PV and CB. A morphological estimate of the dendritic extent for each subtype showed that PV and PV/CB cells demonstrated equally wide, horizontal and vertical arborizations, whereas CB cells had wide horizontal and restricted vertical arborizations. CR cells had restricted horizontal and very long vertical arborizations. Postsynaptic morphological targeting was also found to be specific, namely, PV(+) and PV/CB(+) nerve terminals (NTs) innervate perisomatic regions of principal cells. CR(+) NTs innervate only dendrites of principal cells, and CB(+) NTs innervate both somata and dendrites of principal cells. These data show highly complex innervation patterns for all of the CBP interneurons of the PC and form a basis for further studies in the plasticity of this region.


Subject(s)
Cerebral Cortex/cytology , Interneurons , Neural Pathways/anatomy & histology , Animals , Calbindin 2 , Calbindins , Cerebral Cortex/metabolism , Interneurons/classification , Interneurons/metabolism , Interneurons/ultrastructure , Male , Neural Pathways/metabolism , Parvalbumins/metabolism , Rats , Rats, Sprague-Dawley , S100 Calcium Binding Protein G/metabolism , Synapses/metabolism , Synapses/ultrastructure
15.
Eur J Neurosci ; 24(5): 1373-84, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16987222

ABSTRACT

The piriform cortex makes strong interconnections with limbic structures (amygdala, entorhinal cortex and hippocampus) that are involved in memory processing. These connections have also been implicated in the development of temporal lobe epilepsy. However, little is known about how neurones in this region may change during seizure genesis. Here we tested the hypothesis that in the kindling model of temporal lobe epilepsy GABAA receptor-mediated inhibition is altered in the piriform cortex. To do this we performed whole-cell patch-clamp recordings in piriform cortex brain slices obtained from non-kindled and amygdala-kindled adult rats. We found that kindling coincided with an increase in the amplitude and duration of miniature inhibitory post-synaptic currents (mIPSCs) recorded from non-pyramidal neurones, whereas the mIPSCs occurring on pyramidal (excitatory) cells did not change. Non-stationary noise analysis of mIPSCs occurring on the non-pyramidal neurones showed that inferred unitary conductance of synaptic channels were the same before and after kindling, implying that the channel number increased significantly. Immunocytochemical analysis of the inhibitory innervation showed that it was also unaltered by seizure induction. We also found that the effect of the positive modulator tetrahydrodeoxycorticosterone was reduced on the pyramidal neurones after kindling. In contrast, the potentiating effects of tetrahydrodeoxycorticosterone on non-pyramidal cells were about the same after kindling as in control (sham) rats. These data indicate that amygdala kindling causes a shift in the inhibition 'balance' between the pyramidal and non-pyramidal cells, perhaps leading to the disinhibition of pyramidal cells.


Subject(s)
Cerebral Cortex/metabolism , Desoxycorticosterone/analogs & derivatives , Kindling, Neurologic/metabolism , Neural Inhibition/physiology , Neurons/drug effects , Receptors, GABA-A/metabolism , Amygdala/physiopathology , Animals , Cerebral Cortex/cytology , Desoxycorticosterone/pharmacology , Electric Stimulation/methods , Functional Laterality/physiology , History, Ancient , Immunohistochemistry/methods , In Vitro Techniques , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Membrane Potentials/radiation effects , Neural Inhibition/drug effects , Neurons/physiology , Neurons/radiation effects , Patch-Clamp Techniques/methods , Rats , Rats, Sprague-Dawley
16.
J Neurophysiol ; 94(3): 2171-81, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15928052

ABSTRACT

In the perirhinal cortex of seizure prone (SP) rats, GABA(A)-mediated miniature inhibitory postsynaptic currents (mIPSCs) are smaller in amplitude but have longer deactivation phases than mIPSCs recorded in normal control (NC; outbred) rats. These differences in mIPSCs are correlated to the relatively higher alpha1 subunit expression in the NC rat strains and the higher alpha2, alpha3, and alpha5 subunit expression in the SP strain. Using patch-clamp recording, we investigated how the neurosteroids tetrahydrodeoxcorticosterone (THDOC) and allopregnanolone at physiological and pharmacological concentrations may differentially affect the mIPSCs in the perirhinal cortex of brain slices isolated from SP and NC rats. We found that 100 nM THDOC prolonged the time course and increased the amplitude of both the mono- and biphasic mIPSCs in the SP rats, but these effects were smaller in the NC rats. By comparison, allopregnanolone (100 nM) had small effects in both the NC and SP rats. At 1.0 microM, THDOC enhanced mIPSCs in both strains, but this effect was not greater in the SP rat than it was at 100 nM. By contrast, allopregnanolone (500 nM) enhanced the time course of the mIPSCs in both strains but it reduced mIPSC amplitudes as well. THDOC (100 nM) was much more effective than 100 nM allopregnanolone in inducing a tonic current in SP and NC rats. These data show that neurosteroids modulate synaptic activity at synapses having different biophysical behaviors. As differing GABA(A) receptors are targeted by subsets of interneurons, these data suggest these neurosteroids may selectively modulate one inhibitory input over another.


Subject(s)
Desoxycorticosterone/analogs & derivatives , Evoked Potentials/drug effects , Neural Inhibition/drug effects , Neurons/drug effects , Pregnanolone/pharmacology , Seizures/physiopathology , Analysis of Variance , Animals , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Desoxycorticosterone/pharmacology , Dose-Response Relationship, Drug , Electric Stimulation/methods , Evoked Potentials/physiology , Genetic Predisposition to Disease , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neural Inhibition/physiology , Neural Inhibition/radiation effects , Neurons/physiology , Neurons/radiation effects , Patch-Clamp Techniques/methods , Rats , Rats, Long-Evans , Rats, Wistar , Seizures/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...