Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Microbiol Rep ; 15(6): 614-630, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37752716

ABSTRACT

Rimicaris exoculata shrimps from hydrothermal vent ecosystems are known to host dense epibiotic communities inside their enlarged heads and digestive systems. Conversely, other shrimps from the family, described as opportunistic feeders have received less attention. We examined the nutrition and bacterial communities colonising 'head' chambers and digestive systems of three other alvinocaridids-Rimicaris variabilis, Nautilocaris saintlaurentae and Manuscaris sp.-using a combination of electron microscopy, stable isotopes and sequencing approaches. Our observations inside 'head' cavities and on mouthparts showed only a really low coverage of bacterial epibionts. In addition, no clear correlation between isotopic ratios and relative abundance of epibionts on mouthparts could be established among shrimp individuals. Altogether, these results suggest that none of these alvinocaridids rely on chemosynthetic epibionts as their main source of nutrition. Our analyses also revealed a substantial presence of several Firmicutes and Deferribacterota lineages within the foreguts and midguts of these shrimps, which closest known lineages were systematically digestive symbionts associated with alvinocaridids, and more broadly for Firmicutes from digestive systems of other crustaceans from marine and terrestrial ecosystems. Overall, our study opens new perspectives not only about chemosynthetic symbioses of vent shrimps but more largely about digestive microbiomes with potential ancient and evolutionarily conserved bacterial partnerships among crustaceans.


Subject(s)
Decapoda , Gastrointestinal Microbiome , Hydrothermal Vents , Microbiota , Humans , Animals , Phylogeny , Decapoda/microbiology , Diet , Hydrothermal Vents/microbiology
2.
Article in English | MEDLINE | ID: mdl-34236955

ABSTRACT

A coccoid-shaped, strictly anaerobic, hyperthermophilic and piezophilic organoheterotrophic archaeon, strain Iri35cT, was isolated from a hydrothermal chimney rock sample collected at a depth of 2300 m at the Mid-Atlantic Ridge (Rainbow vent field). Cells of strain Iri35cT grew at NaCl concentrations ranging from 1-5 % (w/v) (optimum 2.0 %), from pH 5.0 to 9.0 (optimum 7.0-7.5), at temperatures between 50 and 90 °C (optimum 75-80 °C) and at pressures from 0.1 to at least 50 MPa (optimum: 10-30 MPa). The novel isolate grew on complex organic substrates, such as yeast extract, tryptone, peptone or beef extract, preferentially in the presence of elemental sulphur or l-cystine; however, these molecules were not necessary for growth. Its genomic DNA G+C content was 54.63 mol%. The genome has been annotated and the metabolic predictions are in accordance with the metabolic characteristics of the strain and of Thermococcales in general. Phylogenetic analyses based on 16S rRNA gene sequences and concatenated ribosomal protein sequences showed that strain Iri35cT belongs to the genus Thermococcus, and is closer to the species T. celericrescens and T. siculi. Average nucleotide identity scores and in silico DNA-DNA hybridization values between the genome of strain Iri35cT and the genomes of the type species of the genus Thermococcus were below the species delineation threshold. Therefore, and considering the phenotypic data presented, strain Iri35cT is suggested to represent a novel species, for which the name Thermococcus camini sp. nov. is proposed, with the type strain Iri35cT (=UBOCC M-2026T=DSM 111003T).


Subject(s)
Hydrothermal Vents/microbiology , Phylogeny , Seawater/microbiology , Thermococcus/classification , Atlantic Ocean , Bacterial Typing Techniques , Base Composition , DNA, Archaeal/genetics , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfur , Thermococcus/isolation & purification
3.
Front Microbiol ; 11: 2023, 2020.
Article in English | MEDLINE | ID: mdl-32973733

ABSTRACT

Shallow-water hydrothermal vents are widespread, especially in the Mediterranean Sea, owing to the active volcanism of the area. Apart free microbial communities' investigations, few biological studies have been leaded yet. Investigations of microbial communities associated with Nematoda, an ecologically important group in sediments, can help to improve our overall understanding of these ecosystems. We used a multidisciplinary-approach, based on microscopic observations (scanning electron microscopy: SEM and Fluorescence In Situ Hybridization: FISH) coupled with a molecular diversity analysis using metabarcoding, based on the 16S rRNA gene (V3-V4 region), to characterize the bacterial community of a free-living marine nematode and its environment, the shallow hydrothermal vent near Naples (Italy). Observations of living bacteria in the intestine (FISH), molecular and phylogenetic analyses showed that this species of nematode harbors its own bacterial community, distinct from the surrounding sediment and water. Metabarcoding results revealed the specific microbiomes of the sediment from three sites of this hydrothermal area to be composed mainly of sulfur oxidizing and reducing related bacteria.

4.
Sci Rep ; 9(1): 7019, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31065037

ABSTRACT

Prokaryotes and free-living nematodes are both very abundant and co-occur in marine environments, but little is known about their possible association. Our objective was to characterize the microbiome of a neglected but ecologically important group of free-living benthic nematodes of the Oncholaimidae family. We used a multi-approach study based on microscopic observations (Scanning Electron Microscopy and Fluorescence In Situ Hybridization) coupled with an assessment of molecular diversity using metabarcoding based on the 16S rRNA gene. All investigated free-living marine nematode specimens harboured distinct microbial communities (from the surrounding water and sediment and through the seasons) with ectosymbiosis seemed more abundant during summer. Microscopic observations distinguished two main morphotypes of bacteria (rod-shaped and filamentous) on the cuticle of these nematodes, which seemed to be affiliated to Campylobacterota and Gammaproteobacteria, respectively. Both ectosymbionts belonged to clades of bacteria usually associated with invertebrates from deep-sea hydrothermal vents. The presence of the AprA gene involved in sulfur metabolism suggested a potential for chemosynthesis in the nematode microbial community. The discovery of potential symbiotic associations of a shallow-water organism with taxa usually associated with deep-sea hydrothermal vents, is new for Nematoda, opening new avenues for the study of ecology and bacterial relationships with meiofauna.


Subject(s)
Bacteria/classification , Nematoda/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Animals , Aquatic Organisms/microbiology , Bacteria/genetics , Bacteria/growth & development , Bacteria/metabolism , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Female , In Situ Hybridization, Fluorescence , Male , Microscopy, Electron, Scanning , Phylogeny , Sulfur/metabolism , Symbiosis
5.
Front Microbiol ; 10: 808, 2019.
Article in English | MEDLINE | ID: mdl-31057515

ABSTRACT

Rimicaris exoculata is one of the most well-known and emblematic species of endemic vent fauna. Like many other species from these ecosystems, Rimicaris shrimps host important communities of chemosynthetic bacteria living in symbiosis with their host inside the cephalothorax and gut. For many of these symbiotic partners, the mode of transmission remains to be elucidated and the starting point of the symbiotic relationship is not yet defined, but could begin with the egg. In this study, we explored the proliferation of microbial communities on R. exoculata broods through embryonic development using a combination of NGS sequencing and microscopy approaches. Variations in abundance and diversity of egg microbial communities were analyzed in broods at different developmental stages and collected from mothers at two distinct vent fields on the Mid-Atlantic Ridge (TAG and Snake Pit). We also assessed the specificity of the egg microbiome by comparing communities developing on egg surfaces with those developing on the cuticle of pleopods, which are thought to be exposed to similar environmental conditions because the brood is held under the female's abdomen. In terms of abundance, bacterial colonization clearly increases with both egg developmental stage and the position of the egg within the brood: those closest to the exterior having a higher bacterial coverage. Bacterial biomass increase also accompanies an increase of mineral precipitations and thus clearly relates to the degree of exposure to vent fluids. In terms of diversity, most bacterial lineages were found in all samples and were also those found in the cephalothorax of adults. However, significant variation occurs in the relative abundance of these lineages, most of this variation being explained by body surface (egg vs. pleopod), vent field, and developmental stage. The occurrence of symbiont-related lineages of Epsilonbacteraeota, Gammaproteobacteria, Zetaproteobacteria, and Mollicutes provide a basis for discussion on both the acquisition of symbionts and the potential roles of these bacterial communities during egg development.

6.
Front Microbiol ; 9: 2246, 2018.
Article in English | MEDLINE | ID: mdl-30294317

ABSTRACT

Deep-sea hydrothermal vent meiofauna have been the focus of recent research and the discovery of an abundant well-adapted free-living marine nematode on the Mid-Atlantic Ridge offers new perspectives on adaptations to the vent environment. Indeed, knowledge concerning biological interactions of microbes and meiofauna in marine extreme environments is scarce, especially for nematodes. In this study, we used microscopic observations [fluorescence in situ hybridization (FISH) and scanning electron microscopy (SEM)] and metabarcoding of 16S rRNA to characterize the bacterial community of the nematode species Oncholaimus dyvae, an overlooked but ecologically important vent organism. Detection of bacteria in the buccal cavity and on the cuticle (SEM) and epibionts in its intestine (FISH) suggests that O. dyvae harbors its own bacterial community. Molecular results and phylogenetic analysis show that bacteria associated with this species are related to symbiotic lineages typical of hydrothermal vent fauna, such as sulfur-oxidizing bacteria related to Epsilonproteobacteria and Gammaproteobacteria. This multi-approach study suggests a potential symbiotic role of bacteria with its nematode host and opens new research perspectives on vent meiofauna.

7.
Int J Syst Evol Microbiol ; 67(6): 1665-1668, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28150576

ABSTRACT

A novel sulfur-reducing bacterium, strain K6013T, was isolated from a sulfide sample collected at a depth of 2771 m from a high-temperature hydrothermal vent in the Indian Ocean. Cells were Gram-stain-negative, anaerobic, motile rods (0.9-2.2×0.4-0.6 µm). The strain grew at NaCl concentrations ranging from 1 to 4.5 % (w/v) (optimum 2.5 %), at pH 5 to 8 (optimum pH 6), and at temperatures between 40 and 75 °C (optimum 65 °C). K6013T was an obligate chemolithoautotroph, using thiosulfate, sulfur and nitrate as terminal electron acceptors in the presence of H2 but not sulfate, sulfite nor nitrite. The major cellular fatty acids were C16 : 0 (17.4 %), C18 : 1ω7c/C18 : 1ω6c (ummed feature 8, 37.91 %), C18 : 0 (18.29 %) and C14 : 0 3-OH/iso-C16: 1I (summed feature 2, 8.56 %). The DNA G+C content was 38.2 mol%. The results of phylogenetic 16S rRNA gene sequence analyses indicated that K6013T represents a member of the genus Desulfurobacterium within the class Aquificae, with highest sequence similarity of 96.93 % to Desulfurobacterium atlanticum SL22T. On the basis of genotypic and phenotypic data, K6013T is considered to represent a novel species of the genus Desulfurobacterium, for which the name Desulfurobacterium indicum sp. nov. is proposed, with the type strain K6013T (=DSM 101677T=MCCC 1A01868T).


Subject(s)
Hydrothermal Vents/microbiology , Phylogeny , Sulfur-Reducing Bacteria/classification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Indian Ocean , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfur , Sulfur-Reducing Bacteria/genetics , Sulfur-Reducing Bacteria/isolation & purification , Thiosulfates
8.
Int J Syst Evol Microbiol ; 66(10): 3904-3911, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27392787

ABSTRACT

A novel sulfate-reducing bacterium, strain J2T, was isolated from a serpentinized peridotite sample from the Indian Ocean. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain J2T clustered with the genus Desulfovibrio within the family Desulfovibrionaceae, but it showed low similarity (87.95 %) to the type species Desulfovibrio desulfuricans DSM 642T. It was most closely related to Desulfovibrio portus MSL79T (96.96 %), followed by Desulfovibrio aespoeensis Aspo-2T (96.11 %), Desulfovibrio piezophilus C1TLV30T (96.04 %) and Desulfovibrio profundus DSM 11384T (95.17 %). Other available sequences shared less than 93.33 % 16S rRNA gene sequence similarity. Cells were Gram-staining-negative, anaerobic, motile vibrios (2-6×0.4-0.6 µm). Growth was observed at salinities ranging from 0.2 to 6 % (optimum 2.5 %), from pH 5 to 8 (optimum pH 6.5-7) and at temperatures between 9 and 40 °C (optimum 30-35 °C). J2T was piezophilic, growing optimally at 10 MPa (range 0-30 MPa). J2T used lactate, malate, pyruvate, formate and hydrogen as energy sources. Sulfate, thiosulfate, sulfite, fumarate and nitrate were used as terminal electron acceptors. Lactate and pyruvate were fermented. The main fatty acids were iso-C15 : 0, anteiso-C15 : 0, summed feature 9 (iso-C17 : 1ω9c and/or C16 : 0 10-methyl) and iso-C17 : 0. The DNA G+C content of strain J2T was 63.5 mol%. The combined genotypic and phenotypic data show that strain J2T represents a novel species of a novel genus in the family Desulfovibrionaceae, for which the name Pseudodesulfovibrio indicus gen. nov., sp. nov. is proposed, with the type strain J2T (=MCCC 1A01867T = DSM 101483T). We also propose the reclassification of D. piezophilus as Pseudodesulfovibrio piezophilus comb. nov., D. profundus as Pseudodesulfovibrio profundus comb. nov., D. portus as Pseudodesulfovibrio portus comb. nov. and D. aespoeensis as Pseudodesulfovibrio aespoeensis comb. nov.


Subject(s)
Desulfovibrio/classification , Phylogeny , Sulfur-Reducing Bacteria/classification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Desulfovibrio/genetics , Desulfovibrio/isolation & purification , Fatty Acids/chemistry , Indian Ocean , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfur-Reducing Bacteria/genetics , Sulfur-Reducing Bacteria/isolation & purification
9.
Int J Syst Evol Microbiol ; 66(8): 3142-3149, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27189596

ABSTRACT

A novel hyperthermophilic, piezophilic, anaerobic archaeon, designated NCB100T, was isolated from a hydrothermal vent flange fragment collected in the Guaymas basin at the hydrothermal vent site named 'Rebecca's Roost' at a depth of 1997 m. Enrichment and isolation were performed at 100 °C under atmospheric pressure. Cells of strain NCB100T were highly motile, irregular cocci with a diameter of ~1 µm. Growth was recorded at temperatures between 70 and 112 °C (optimum 105 °C) and hydrostatic pressures of 0.1-80 MPa (optimum 40-50 MPa). Growth was observed at pH 3.5-8.5 (optimum pH 7) and with 1.5-7 % NaCl (optimum at 2.5-3 %). Strain NCB100T was a strictly anaerobic chemo-organoheterotroph and grew on complex proteinaceous substrates such as yeast extract, peptone and tryptone, as well as on glycogen and starch. Elemental sulfur was required for growth and was reduced to hydrogen sulfide. The fermentation products from complex proteinaceous substrates were CO2 and H2. The G+C content of the genomic DNA was 41.3 %. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain NCB100T belongs to the genus Pyrococcus, showing 99 % similarity with the other described species of the genus Pyrococcus. On the basis of physiological characteristics, DNA G+C content, similarity level between ribosomal proteins and an average nucleotide identity value of 79 %, strain NCB100T represents a novel species for which the name Pyrococcus kukulkanii sp. nov. is proposed. The type strain is NCB100T (=DSM 101590T=Souchothèque de Bretagne BG1337T).


Subject(s)
Hydrothermal Vents/microbiology , Phylogeny , Pyrococcus/classification , Seawater/microbiology , Base Composition , DNA, Archaeal/genetics , Hot Temperature , Hydrostatic Pressure , Pyrococcus/genetics , Pyrococcus/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
10.
Mar Drugs ; 13(6): 3732-44, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26110895

ABSTRACT

Cultured pearls are the product of grafting and rearing of Pinctada margaritifera pearl oysters in their natural environment. Nucleus rejections and oyster mortality appear to result from bacterial infections or from an inappropriate grafting practice. To reduce the impact of bacterial infections, synthetic antibiotics have been applied during the grafting practice. However, the use of such antibiotics presents a number of problems associated with their incomplete biodegradability, limited efficacy in some cases, and an increased risk of selecting for antimicrobial resistant bacteria. We investigated the application of a marine antimicrobial peptide, tachyplesin, which is present in the Japanese horseshoe crab Tachypleus tridentatus, in combination with two marine bacterial exopolymers as alternative treatment agents. In field studies, the combination treatment resulted in a significant reduction in graft failures vs. untreated controls. The combination of tachyplesin (73 mg/L) with two bacterial exopolysaccharides (0.5% w/w) acting as filming agents, reduces graft-associated bacterial contamination. The survival data were similar to that reported for antibiotic treatments. These data suggest that non-antibiotic treatments of pearl oysters may provide an effective means of improving oyster survival following grafting procedures.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Biopolymers/pharmacology , DNA-Binding Proteins/pharmacology , Horseshoe Crabs/chemistry , Peptides, Cyclic/pharmacology , Pinctada/metabolism , Animals , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/isolation & purification , Biopolymers/isolation & purification , DNA-Binding Proteins/isolation & purification , Peptides, Cyclic/isolation & purification , Survival
11.
Environ Microbiol ; 16(9): 2777-90, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24238139

ABSTRACT

SUMMARY: The Sonora Margin cold seeps present on the seafloor a patchiness pattern of white microbial mats surrounded by polychaete and gastropod beds. These surface assemblages are fuelled by abundant organic inputs sedimenting from the water column and upward-flowing seep fluids. Elevated microbial density was observed in the underlying sediments. A previous study on the same samples identified anaerobic oxidation of methane (AOM) as the potential dominant archaeal process in these Sonora Margin sediments, probably catalysed by three clades of archaeal anaerobic methanotrophs (ANME-1, ANME-2 and ANME-3) associated with bacterial syntrophs. In this study, molecular surveys and microscopic observations investigating the diversity of Bacteria involved in AOM process, as well as the environmental parameters affecting the composition and the morphologies of AOM consortia in the Sonora Margin sediments were carried out. Two groups of Bacteria were identified within the AOM consortia, the Desulfosarcina/Desulfococcus SEEP SRB-1a group and a Desulfobulbus-related group. These bacteria showed different niche distributions, association specificities and consortia architectures, depending on sediment surface communities, geochemical parameters and ANME-associated phylogeny. Therefore, the syntrophic AOM process appears to depend on sulphate-reducing bacteria with different ecological niches and/or metabolisms, in a biofilm-like organic matrix.


Subject(s)
Ecosystem , Geologic Sediments/microbiology , Methane/metabolism , Microbial Consortia , Sulfur-Reducing Bacteria/classification , DNA, Bacterial/genetics , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA , Sulfur-Reducing Bacteria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...