Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Energies (Basel) ; 13(23)2022.
Article in English | MEDLINE | ID: mdl-36452268

ABSTRACT

Renewable portfolio standards are targeting high levels of variable solar photovoltaics (PV) in electric distribution systems, which makes reliability more challenging to maintain for distribution system operators (DSOs). Distributed energy resources (DERs), including smart, connected appliances and PV inverters, represent responsive grid resources that can provide flexibility to support the DSO in actively managing their networks to facilitate reliability under extreme levels of solar PV. This flexibility can also be used to optimize system operations with respect to economic signals from wholesale energy and ancillary service markets. Here, we present a novel hierarchical scheme that actively controls behind-the-meter DERs to reliably manage each unbalanced distribution feeder and exploits the available flexibility to ensure reliable operation and economically optimizes the entire distribution network. Each layer of the scheme employs advanced optimization methods at different timescales to ensure that the system operates within both grid and device limits. The hierarchy is validated in a large-scale realistic simulation based on data from the industry. Simulation results show that coordination of flexibility improves both system reliability and economics, and enables greater penetration of solar PV. Discussion is also provided on the practical viability of the required communications and controls to implement the presented scheme within a large DSO.

2.
Phys Rev E ; 102(6-1): 063108, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33465973

ABSTRACT

The precise set of parameters governing transition to turbulence in wall-bounded shear flows remains an open question; many theoretical bounds have been obtained, but there is not yet a consensus between these bounds and experimental or simulation results. In this work, we focus on a method to provide a provable Reynolds-number-dependent bound on the amplitude of perturbations a flow can sustain while maintaining the laminar state. Our analysis relies on an input-output approach that partitions the dynamics into a feedback interconnection of the linear and nonlinear dynamics (i.e., a Luré system that represents the nonlinearity as static feedback). We then construct quadratic constraints of the nonlinear term that is restricted by system physics to be energy-conserving (lossless) and to have bounded input-output energy. Computing the region of attraction of the laminar state (set of safe perturbations) and permissible perturbation amplitude are then reformulated as linear matrix inequalities, which allows more computationally efficient solutions than prevailing nonlinear approaches based on the sum of squares programming. The proposed framework can also be used for energy method computations and linear stability analysis. We apply our approach to low-dimensional nonlinear shear flow models for a range of Reynolds numbers. The results from our analytically derived bounds are consistent with the bounds identified through exhaustive simulations. However, they have the added benefit of being achieved at a much lower computational cost and providing a provable guarantee that a certain level of perturbation is permissible.

SELECTION OF CITATIONS
SEARCH DETAIL