Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 3583, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37328472

ABSTRACT

COVID-19 has stimulated the rapid development of new antibody and small molecule therapeutics to inhibit SARS-CoV-2 infection. Here we describe a third antiviral modality that combines the drug-like advantages of both. Bicycles are entropically constrained peptides stabilized by a central chemical scaffold into a bi-cyclic structure. Rapid screening of diverse bacteriophage libraries against SARS-CoV-2 Spike yielded unique Bicycle binders across the entire protein. Exploiting Bicycles' inherent chemical combinability, we converted early micromolar hits into nanomolar viral inhibitors through simple multimerization. We also show how combining Bicycles against different epitopes into a single biparatopic agent allows Spike from diverse variants of concern (VoC) to be targeted (Alpha, Beta, Delta and Omicron). Finally, we demonstrate in both male hACE2-transgenic mice and Syrian golden hamsters that both multimerized and biparatopic Bicycles reduce viraemia and prevent host inflammation. These results introduce Bicycles as a potential antiviral modality to tackle new and rapidly evolving viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Male , Animals , Cricetinae , Mice , Antiviral Agents/pharmacology , Peptides/pharmacology , Antibodies , Mesocricetus , Mice, Transgenic , Spike Glycoprotein, Coronavirus/genetics
2.
Am J Pathol ; 186(3): 600-15, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26765958

ABSTRACT

Idiopathic pulmonary fibrosis is a chronic, progressive fibrotic disease with a poor prognosis. The balance between transforming growth factor ß1 and bone morphogenetic protein (BMP) signaling plays an important role in tissue homeostasis, and alterations can result in pulmonary fibrosis. We hypothesized that multiple BMP accessory proteins may be responsible for maintaining this balance in the lung. Using the bleomycin mouse model for fibrosis, we examined an array of BMP accessory proteins for changes in mRNA expression. We report significant increases in mRNA expression of gremlin 1, noggin, follistatin, and follistatin-like 1 (Fstl1), and significant decreases in mRNA expression of chordin, kielin/chordin-like protein, nephroblastoma overexpressed gene, and BMP and activin membrane-bound inhibitor (BAMBI). Protein expression studies demonstrated increased levels of noggin, BAMBI, and FSTL1 in the lungs of bleomycin-treated mice and in the lungs of idiopathic pulmonary fibrosis patients. Furthermore, we demonstrated that transforming growth factor ß stimulation resulted in increased expression of noggin, BAMBI, and FSTL1 in human small airway epithelial cells. These results provide the first evidence that multiple BMP accessory proteins are altered in fibrosis and may play a role in promoting fibrotic injury.


Subject(s)
Bone Morphogenetic Proteins/genetics , Gene Expression Regulation , Idiopathic Pulmonary Fibrosis/pathology , Signal Transduction , Transforming Growth Factor beta1/genetics , Adult , Aged , Animals , Bleomycin/adverse effects , Bone Morphogenetic Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Disease Models, Animal , Epithelial Cells/metabolism , Follistatin-Related Proteins/genetics , Follistatin-Related Proteins/metabolism , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Middle Aged , RNA, Messenger/metabolism , Random Allocation , Specific Pathogen-Free Organisms , Transforming Growth Factor beta1/metabolism
3.
Horm Cancer ; 4(3): 123-39, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23435732

ABSTRACT

Somatic and germline mutations in the dual zinc-finger transcription factor GATA3 are associated with breast cancers expressing the estrogen receptor (ER) and the autosomal dominant hypoparathyroidism-deafness-renal dysplasia syndrome, respectively. To elucidate the role of GATA3 in breast tumorigenesis, we investigated 40 breast cancers that expressed ER, for GATA3 mutations. Six different heterozygous GATA3 somatic mutations were identified in eight tumors, and these consisted of: a frameshifting deletion/insertion (944_945delGGinsAGC), an in-frame deletion of a key arginine residue (991_993delAGG), a seven-nucleotide frameshifting insertion (991_992insTGGAGGA), a frameshifting deletion (1196_1197delGA), and two frameshifting single nucleotide insertions (1224_1225insG found in three tumors and 1224_1225insA). Five of the eight mutations occurred in tumors that retained GATA3 immunostaining, indicating that absence of GATA3 immunostaining is an unreliable predictor of the presence of GATA3 mutations. Luciferase reporter assays, electrophoretic mobility shift assays, immunofluorescence, invasion and proliferation assays demonstrated that the GATA3 mutations resulted in loss (or reduction) of DNA binding, decrease in transactivational activity, and alterations in invasiveness but not proliferation. The 991_992insTGGAGGA (Arg330 frameshift) mutation led to a loss of nuclear localization, yet the 991_993delAGG (Arg330deletion) retained nuclear localization. Investigation of the putative nuclear localization signal (NLS) sites showed that the NLS of GATA3 does not conform to either a classical mono- or bi-partite signal, but contains multiple cooperative NLS elements residing around the N-terminal zinc-finger which comprises residues 264-288. Thus, approximately 20 % ER-positive breast cancers have somatic GATA3 mutations that lead to a loss of GATA3 transactivation activity and altered cell invasiveness.


Subject(s)
Breast Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , GATA3 Transcription Factor/genetics , Neoplasm Invasiveness/genetics , Amino Acid Sequence , Breast Neoplasms/pathology , Cell Nucleus/metabolism , Cell Nucleus/pathology , Female , GATA3 Transcription Factor/metabolism , Humans , MCF-7 Cells , Mutation , Neoplasm Invasiveness/pathology , Receptors, Estrogen/genetics , Transcriptional Activation/genetics
4.
J Clin Invest ; 120(6): 2144-55, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20484821

ABSTRACT

Heterozygous mutations of GATA3, which encodes a dual zinc-finger transcription factor, cause hypoparathyroidism with sensorineural deafness and renal dysplasia. Here, we have investigated the role of GATA3 in parathyroid function by challenging Gata3+/- mice with a diet low in calcium and vitamin D so as to expose any defects in parathyroid function. This led to a higher mortality among Gata3+/- mice compared with Gata3+/+ mice. Compared with their wild-type littermates, Gata3+/- mice had lower plasma concentrations of calcium and parathyroid hormone (PTH) and smaller parathyroid glands with a reduced Ki-67 proliferation rate. At E11.5, Gata3+/- embryos had smaller parathyroid-thymus primordia with fewer cells expressing the parathyroid-specific gene glial cells missing 2 (Gcm2), the homolog of human GCMB. In contrast, E11.5 Gata3-/- embryos had no Gcm2 expression and by E12.5 had gross defects in the third and fourth pharyngeal pouches, including absent parathyroid-thymus primordia. Electrophoretic mobility shift, luciferase reporter, and chromatin immunoprecipitation assays showed that GATA3 binds specifically to a functional double-GATA motif within the GCMB promoter. Thus, GATA3 is critical for the differentiation and survival of parathyroid progenitor cells and, with GCM2/B, forms part of a transcriptional cascade in parathyroid development and function.


Subject(s)
Hypoparathyroidism/metabolism , Neuroglia/metabolism , Nuclear Proteins/metabolism , Parathyroid Glands/cytology , Transcription Factors/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Genes , Hepatocyte Nuclear Factor 1-beta/genetics , Hepatocyte Nuclear Factor 1-beta/metabolism , Hypoparathyroidism/genetics , Mice , Mice, Knockout , Mutation , Nuclear Proteins/genetics , Parathyroid Glands/metabolism , Parathyroid Hormone/biosynthesis , Parathyroid Hormone/genetics , Parathyroid Hormone/metabolism , Thymus Gland/metabolism , Transcription Factors/genetics , Zinc Fingers/genetics
5.
J Clin Endocrinol Metab ; 94(10): 3897-904, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19723756

ABSTRACT

CONTEXT: The hypoparathyroidism, deafness, renal dysplasia (HDR) syndrome is caused by mutations in the gene encoding GATA3, which belongs to a family of dual zinc-finger transcription factors that have a role in vertebrate embryonic development. OBJECTIVE: The aim of the study was to identify the GATA3 mutation in a HDR patient and determine its functional consequences. PATIENT AND DESIGN: A patient with HDR was studied after approval from the local ethical committee. Leukocyte DNA was used with GATA3-specific primers for PCR amplification, and the DNA sequences of the PCR products were determined. Wild-type and mutant GATA3 constructs were transfected into COS-7 cell, and their functions were assessed by Western blot analysis, immunocytochemistry, EMSAs, luciferase reporter assays, and three-dimensional modeling. RESULTS: A novel missense mutation, Thr272Ile, in zinc finger 1 (ZnF1) of GATA3 was identified. Western blot analysis and immunofluorescence revealed that the mutation did not affect nuclear localization of GATA3. However, EMSAs showed it to reduce DNA binding affinity, but not stability, and yeast two-hybrid assays demonstrated that the mutant GATA3 resulted in a loss of interaction with ZnF1 and ZnF6 of the cofactor FOG2. The mutant GATA3 significantly reduced luciferase reporter activity by more than 65% (P < 0.001), and three-dimensional modeling indicated that the functional abnormalities may be due to a loss of Thr272 polar side chain interaction with Leu268. CONCLUSIONS: A novel missense HDR-associated GATA3 mutation, Thr272Ile, has been identified and shown to result in reduced DNA binding, a partial loss of FOG2 interaction, and a decrease in gene transcription.


Subject(s)
Deafness/genetics , GATA3 Transcription Factor/genetics , Hypoparathyroidism/genetics , Kidney Diseases/genetics , Kidney/abnormalities , Mutation, Missense , Amino Acid Sequence , Blotting, Western , DNA Mutational Analysis , Electrophoretic Mobility Shift Assay , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Infant , Isoleucine , Kidney Diseases/pathology , Male , Molecular Sequence Data , Syndrome , Threonine
SELECTION OF CITATIONS
SEARCH DETAIL
...