Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Am J Hum Genet ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38723630

ABSTRACT

Transcriptome-wide association studies (TWASs) have investigated the role of genetically regulated transcriptional activity in the etiologies of breast and ovarian cancer. However, methods performed to date have focused on the regulatory effects of risk-associated SNPs thought to act in cis on a nearby target gene. With growing evidence for distal (trans) regulatory effects of variants on gene expression, we performed TWASs of breast and ovarian cancer using a Bayesian genome-wide TWAS method (BGW-TWAS) that considers effects of both cis- and trans-expression quantitative trait loci (eQTLs). We applied BGW-TWAS to whole-genome and RNA sequencing data in breast and ovarian tissues from the Genotype-Tissue Expression project to train expression imputation models. We applied these models to large-scale GWAS summary statistic data from the Breast Cancer and Ovarian Cancer Association Consortia to identify genes associated with risk of overall breast cancer, non-mucinous epithelial ovarian cancer, and 10 cancer subtypes. We identified 101 genes significantly associated with risk with breast cancer phenotypes and 8 with ovarian phenotypes. These loci include established risk genes and several novel candidate risk loci, such as ACAP3, whose associations are predominantly driven by trans-eQTLs. We replicated several associations using summary statistics from an independent GWAS of these cancer phenotypes. We further used genotype and expression data in normal and tumor breast tissue from the Cancer Genome Atlas to examine the performance of our trained expression imputation models. This work represents an in-depth look into the role of trans eQTLs in the complex molecular mechanisms underlying these diseases.

2.
medRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38633804

ABSTRACT

Rare, germline loss-of-function variants in a handful of genes that encode DNA repair proteins have been shown to be associated with epithelial ovarian cancer with a stronger association for the high-grade serous hiostotype. The aim of this study was to collate exome sequencing data from multiple epithelial ovarian cancer case cohorts and controls in order to systematically evaluate the role of coding, loss-of-function variants across the genome in epithelial ovarian cancer risk. We assembled exome data for a total of 2,573 non-mucinous cases (1,876 high-grade serous and 697 non-high grade serous) and 13,925 controls. Harmonised variant calling and quality control filtering was applied across the different data sets. We carried out a gene-by-gene simple burden test for association of rare loss-of-function variants (minor allele frequency < 0.1%) with all non-mucinous ovarian cancer, high grade serous ovarian cancer and non-high grade serous ovarian cancer using logistic regression adjusted for the top four principal components to account for cryptic population structure and genetic ancestry. Seven of the top 10 associated genes were associations of the known ovarian cancer susceptibility genes BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, MSH6 and PALB2 (false discovery probability < 0.1). A further four genes (HELB, OR2T35, NBN and MYO1A) had a false discovery rate of less than 0.1. Of these, HELB was most strongly associated with the non-high grade serous histotype (P = 1.3×10-6, FDR = 9.1×10-4). Further support for this association comes from the observation that loss of function variants in this gene are also associated with age at natural menopause and Mendelian randomisation analysis shows an association between genetically predicted age at natural menopause and endometrioid ovarian cancer, but not high-grade serous ovarian cancer.

3.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014246

ABSTRACT

Transcriptome-wide association studies (TWAS) have investigated the role of genetically regulated transcriptional activity in the etiologies of breast and ovarian cancer. However, methods performed to date have only considered regulatory effects of risk associated SNPs thought to act in cis on a nearby target gene. With growing evidence for distal (trans) regulatory effects of variants on gene expression, we performed TWAS of breast and ovarian cancer using a Bayesian genome-wide TWAS method (BGW-TWAS) that considers effects of both cis- and trans-expression quantitative trait loci (eQTLs). We applied BGW-TWAS to whole genome and RNA sequencing data in breast and ovarian tissues from the Genotype-Tissue Expression project to train expression imputation models. We applied these models to large-scale GWAS summary statistic data from the Breast Cancer and Ovarian Cancer Association Consortia to identify genes associated with risk of overall breast cancer, non-mucinous epithelial ovarian cancer, and 10 cancer subtypes. We identified 101 genes significantly associated with risk with breast cancer phenotypes and 8 with ovarian phenotypes. These loci include established risk genes and several novel candidate risk loci, such as ACAP3, whose associations are predominantly driven by trans-eQTLs. We replicated several associations using summary statistics from an independent GWAS of these cancer phenotypes. We further used genotype and expression data in normal and tumor breast tissue from the Cancer Genome Atlas to examine the performance of our trained expression imputation models. This work represents a first look into the role of trans-eQTLs in the complex molecular mechanisms underlying these diseases.

4.
medRxiv ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37986741

ABSTRACT

Background: Somatic loss of the tumour suppressor RB1 is a common event in tubo-ovarian high-grade serous carcinoma (HGSC), which frequently co-occurs with alterations in homologous recombination DNA repair genes including BRCA1 and BRCA2 (BRCA). We examined whether tumour expression of RB1 was associated with survival across ovarian cancer histotypes (HGSC, endometrioid (ENOC), clear cell (CCOC), mucinous (MOC), low-grade serous carcinoma (LGSC)), and how co-occurrence of germline BRCA pathogenic variants and RB1 loss influences long-term survival in a large series of HGSC. Patients and methods: RB1 protein expression patterns were classified by immunohistochemistry in epithelial ovarian carcinomas of 7436 patients from 20 studies participating in the Ovarian Tumor Tissue Analysis consortium and assessed for associations with overall survival (OS), accounting for patient age at diagnosis and FIGO stage. We examined RB1 expression and germline BRCA status in a subset of 1134 HGSC, and related genotype to survival, tumour infiltrating CD8+ lymphocyte counts and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cell lines with and without BRCA1 mutations to model co-loss with treatment response. We also performed genomic analyses on 126 primary HGSC to explore the molecular characteristics of concurrent homologous recombination deficiency and RB1 loss. Results: RB1 protein loss was most frequent in HGSC (16.4%) and was highly correlated with RB1 mRNA expression. RB1 loss was associated with longer OS in HGSC (hazard ratio [HR] 0.74, 95% confidence interval [CI] 0.66-0.83, P = 6.8 ×10-7), but with poorer prognosis in ENOC (HR 2.17, 95% CI 1.17-4.03, P = 0.0140). Germline BRCA mutations and RB1 loss co-occurred in HGSC (P < 0.0001). Patients with both RB1 loss and germline BRCA mutations had a superior OS (HR 0.38, 95% CI 0.25-0.58, P = 5.2 ×10-6) compared to patients with either alteration alone, and their median OS was three times longer than non-carriers whose tumours retained RB1 expression (9.3 years vs. 3.1 years). Enhanced sensitivity to cisplatin (P < 0.01) and paclitaxel (P < 0.05) was seen in BRCA1 mutated cell lines with RB1 knockout. Among 126 patients with whole-genome and transcriptome sequence data, combined RB1 loss and genomic evidence of homologous recombination deficiency was correlated with transcriptional markers of enhanced interferon response, cell cycle deregulation, and reduced epithelial-mesenchymal transition in primary HGSC. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. Conclusions: Co-occurrence of RB1 loss and BRCA mutation was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.

6.
Nat Commun ; 14(1): 5118, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612286

ABSTRACT

To date, single-nucleotide polymorphisms (SNPs) have been the most intensively investigated class of polymorphisms in genome wide associations studies (GWAS), however, other classes such as insertion-deletion or multiple nucleotide length polymorphism (MNLPs) may also confer disease risk. Multiple reports have shown that the 5p15.33 prostate cancer risk region is a particularly strong expression quantitative trait locus (eQTL) for Iroquois Homeobox 4 (IRX4) transcripts. Here, we demonstrate using epigenome and genome editing that a biallelic (21 and 47 base pairs (bp)) MNLP is the causal variant regulating IRX4 transcript levels. In LNCaP prostate cancer cells (homozygous for the 21 bp short allele), a single copy knock-in of the 47 bp long allele potently alters the chromatin state, enabling de novo functional binding of the androgen receptor (AR) associated with increased chromatin accessibility, Histone 3 lysine 27 acetylation (H3K27ac), and ~3-fold upregulation of IRX4 expression. We further show that an MNLP is amongst the strongest candidate susceptibility variants at two additional prostate cancer risk loci. We estimated that at least 5% of prostate cancer risk loci could be explained by functional non-SNP causal variants, which may have broader implications for other cancers GWAS. More generally, our results underscore the importance of investigating other classes of inherited variation as causal mediators of human traits.


Subject(s)
Neoplasms , Polymorphism, Single Nucleotide , Humans , Male , Chromatin/genetics , Acetylation , Alleles , Nucleotides
7.
Cancer Epidemiol Biomarkers Prev ; 32(9): 1198-1207, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37409955

ABSTRACT

BACKGROUND: Predicting protein levels from genotypes for proteome-wide association studies (PWAS) may provide insight into the mechanisms underlying cancer susceptibility. METHODS: We performed PWAS of breast, endometrial, ovarian, and prostate cancers and their subtypes in several large European-ancestry discovery consortia (effective sample size: 237,483 cases/317,006 controls) and tested the results for replication in an independent European-ancestry GWAS (31,969 cases/410,350 controls). We performed PWAS using the cancer GWAS summary statistics and two sets of plasma protein prediction models, followed by colocalization analysis. RESULTS: Using Atherosclerosis Risk in Communities (ARIC) models, we identified 93 protein-cancer associations [false discovery rate (FDR) < 0.05]. We then performed a meta-analysis of the discovery and replication PWAS, resulting in 61 significant protein-cancer associations (FDR < 0.05). Ten of 15 protein-cancer pairs that could be tested using Trans-Omics for Precision Medicine (TOPMed) protein prediction models replicated with the same directions of effect in both cancer GWAS (P < 0.05). To further support our results, we applied Bayesian colocalization analysis and found colocalized SNPs for SERPINA3 protein levels and prostate cancer (posterior probability, PP = 0.65) and SNUPN protein levels and breast cancer (PP = 0.62). CONCLUSIONS: We used PWAS to identify potential biomarkers of hormone-related cancer risk. SNPs in SERPINA3 and SNUPN did not reach genome-wide significance for cancer in the original GWAS, highlighting the power of PWAS for novel locus discovery, with the added advantage of providing directions of protein effect. IMPACT: PWAS and colocalization are promising methods to identify potential molecular mechanisms underlying complex traits.


Subject(s)
Endometrial Neoplasms , Prostatic Neoplasms , Male , Female , Humans , Proteome/genetics , Genetic Predisposition to Disease , Prostate , Bayes Theorem , Genome-Wide Association Study , Endometrial Neoplasms/genetics , Prostatic Neoplasms/genetics , Blood Proteins , Polymorphism, Single Nucleotide
8.
J Pathol Clin Res ; 9(3): 208-222, 2023 05.
Article in English | MEDLINE | ID: mdl-36948887

ABSTRACT

Our objective was to test whether p53 expression status is associated with survival for women diagnosed with the most common ovarian carcinoma histotypes (high-grade serous carcinoma [HGSC], endometrioid carcinoma [EC], and clear cell carcinoma [CCC]) using a large multi-institutional cohort from the Ovarian Tumor Tissue Analysis (OTTA) consortium. p53 expression was assessed on 6,678 cases represented on tissue microarrays from 25 participating OTTA study sites using a previously validated immunohistochemical (IHC) assay as a surrogate for the presence and functional effect of TP53 mutations. Three abnormal expression patterns (overexpression, complete absence, and cytoplasmic) and the normal (wild type) pattern were recorded. Survival analyses were performed by histotype. The frequency of abnormal p53 expression was 93.4% (4,630/4,957) in HGSC compared to 11.9% (116/973) in EC and 11.5% (86/748) in CCC. In HGSC, there were no differences in overall survival across the abnormal p53 expression patterns. However, in EC and CCC, abnormal p53 expression was associated with an increased risk of death for women diagnosed with EC in multivariate analysis compared to normal p53 as the reference (hazard ratio [HR] = 2.18, 95% confidence interval [CI] 1.36-3.47, p = 0.0011) and with CCC (HR = 1.57, 95% CI 1.11-2.22, p = 0.012). Abnormal p53 was also associated with shorter overall survival in The International Federation of Gynecology and Obstetrics stage I/II EC and CCC. Our study provides further evidence that functional groups of TP53 mutations assessed by abnormal surrogate p53 IHC patterns are not associated with survival in HGSC. In contrast, we validate that abnormal p53 IHC is a strong independent prognostic marker for EC and demonstrate for the first time an independent prognostic association of abnormal p53 IHC with overall survival in patients with CCC.


Subject(s)
Carcinoma, Endometrioid , Ovarian Neoplasms , Humans , Female , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial , Carcinoma, Endometrioid/metabolism
9.
J Natl Cancer Inst ; 115(5): 539-551, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36688720

ABSTRACT

BACKGROUND: The role of ovulation in epithelial ovarian cancer (EOC) is supported by the consistent protective effects of parity and oral contraceptive use. Whether these factors protect through anovulation alone remains unclear. We explored the association between lifetime ovulatory years (LOY) and EOC. METHODS: LOY was calculated using 12 algorithms. Odds ratios (ORs) and 95% confidence intervals (CIs) estimated the association between LOY or LOY components and EOC among 26 204 control participants and 21 267 case patients from 25 studies. To assess whether LOY components act through ovulation suppression alone, we compared beta coefficients obtained from regression models with expected estimates assuming 1 year of ovulation suppression has the same effect regardless of source. RESULTS: LOY was associated with increased EOC risk (OR per year increase = 1.014, 95% CI = 1.009 to 1.020 to OR per year increase = 1.044, 95% CI = 1.041 to 1.048). Individual LOY components, except age at menarche, also associated with EOC. The estimated model coefficient for oral contraceptive use and pregnancies were 4.45 times and 12- to 15-fold greater than expected, respectively. LOY was associated with high-grade serous, low-grade serous, endometrioid, and clear cell histotypes (ORs per year increase = 1.054, 1.040, 1.065, and 1.098, respectively) but not mucinous tumors. Estimated coefficients of LOY components were close to expected estimates for high-grade serous but larger than expected for low-grade serous, endometrioid, and clear cell histotypes. CONCLUSIONS: LOY is positively associated with nonmucinous EOC. Differences between estimated and expected model coefficients for LOY components suggest factors beyond ovulation underlie the associations between LOY components and EOC in general and for non-HGSOC.


Subject(s)
Ovarian Neoplasms , Pregnancy , Humans , Female , Carcinoma, Ovarian Epithelial/epidemiology , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/etiology , Ovarian Neoplasms/pathology , Risk Factors , Parity , Contraceptives, Oral/adverse effects , Case-Control Studies
10.
Gynecol Oncol ; 168: 23-31, 2023 01.
Article in English | MEDLINE | ID: mdl-36368129

ABSTRACT

OBJECTIVE: Mucinous ovarian carcinoma (MOC) is a rare histotype of ovarian cancer, with low response rates to standard chemotherapy, and very poor survival for patients diagnosed at advanced stage. There is a limited understanding of the MOC immune landscape, and consequently whether immune checkpoint inhibitors could be considered for a subset of patients. METHODS: We performed multicolor immunohistochemistry (IHC) and immunofluorescence (IF) on tissue microarrays in a cohort of 126 MOC patients. Cell densities were calculated in the epithelial and stromal components for tumor-associated macrophages (CD68+/PD-L1+, CD68+/PD-L1-), T cells (CD3+/CD8-, CD3+/CD8+), putative T-regulatory cells (Tregs, FOXP3+), B cells (CD20+/CD79A+), plasma cells (CD20-/CD79a+), and PD-L1+ and PD-1+ cells, and compared these values with clinical factors. Univariate and multivariable Cox Proportional Hazards assessed overall survival. Unsupervised k-means clustering identified patient subsets with common patterns of immune cell infiltration. RESULTS: Mean densities of PD1+ cells, PD-L1- macrophages, CD4+ and CD8+ T cells, and FOXP3+ Tregs were higher in the stroma compared to the epithelium. Tumors from advanced (Stage III/IV) MOC had greater epithelial infiltration of PD-L1- macrophages, and fewer PD-L1+ macrophages compared with Stage I/II cancers (p = 0.004 and p = 0.014 respectively). Patients with high epithelial density of FOXP3+ cells, CD8+/FOXP3+ cells, or PD-L1- macrophages, had poorer survival, and high epithelial CD79a + plasma cells conferred better survival, all upon univariate analysis only. Clustering showed that most MOC (86%) had an immune depleted (cold) phenotype, with only a small proportion (11/76,14%) considered immune inflamed (hot) based on T cell and PD-L1 infiltrates. CONCLUSION: In summary, MOCs are mostly immunogenically 'cold', suggesting they may have limited response to current immunotherapies.


Subject(s)
B7-H1 Antigen , Ovarian Neoplasms , Humans , Female , B7-H1 Antigen/genetics , Carcinoma, Ovarian Epithelial/pathology , Ovarian Neoplasms/drug therapy , CD8-Positive T-Lymphocytes , Forkhead Transcription Factors/therapeutic use , Lymphocytes, Tumor-Infiltrating , Tumor Microenvironment
11.
Cancer ; 129(5): 697-713, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36572991

ABSTRACT

BACKGROUND: Cyclin E1 (CCNE1) is a potential predictive marker and therapeutic target in tubo-ovarian high-grade serous carcinoma (HGSC). Smaller studies have revealed unfavorable associations for CCNE1 amplification and CCNE1 overexpression with survival, but to date no large-scale, histotype-specific validation has been performed. The hypothesis was that high-level amplification of CCNE1 and CCNE1 overexpression, as well as a combination of the two, are linked to shorter overall survival in HGSC. METHODS: Within the Ovarian Tumor Tissue Analysis consortium, amplification status and protein level in 3029 HGSC cases and mRNA expression in 2419 samples were investigated. RESULTS: High-level amplification (>8 copies by chromogenic in situ hybridization) was found in 8.6% of HGSC and overexpression (>60% with at least 5% demonstrating strong intensity by immunohistochemistry) was found in 22.4%. CCNE1 high-level amplification and overexpression both were linked to shorter overall survival in multivariate survival analysis adjusted for age and stage, with hazard stratification by study (hazard ratio [HR], 1.26; 95% CI, 1.08-1.47, p = .034, and HR, 1.18; 95% CI, 1.05-1.32, p = .015, respectively). This was also true for cases with combined high-level amplification/overexpression (HR, 1.26; 95% CI, 1.09-1.47, p = .033). CCNE1 mRNA expression was not associated with overall survival (HR, 1.00 per 1-SD increase; 95% CI, 0.94-1.06; p = .58). CCNE1 high-level amplification is mutually exclusive with the presence of germline BRCA1/2 pathogenic variants and shows an inverse association to RB1 loss. CONCLUSION: This study provides large-scale validation that CCNE1 high-level amplification is associated with shorter survival, supporting its utility as a prognostic biomarker in HGSC.


Subject(s)
Carcinoma , Cystadenocarcinoma, Serous , Ovarian Neoplasms , Female , Humans , Ovarian Neoplasms/pathology , Transcription Factors/genetics , RNA, Messenger , Cystadenocarcinoma, Serous/genetics , Oncogene Proteins/genetics , Oncogene Proteins/therapeutic use , Cyclin E/genetics
12.
Clin Cancer Res ; 28(22): 4947-4956, 2022 11 14.
Article in English | MEDLINE | ID: mdl-35816189

ABSTRACT

PURPOSE: To identify molecular subclasses of clear cell ovarian carcinoma (CCOC) and assess their impact on clinical presentation and outcomes. EXPERIMENTAL DESIGN: We profiled 421 primary CCOCs that passed quality control using a targeted deep sequencing panel of 163 putative CCOC driver genes and whole transcriptome sequencing of 211 of these tumors. Molecularly defined subgroups were identified and tested for association with clinical characteristics and overall survival. RESULTS: We detected a putative somatic driver mutation in at least one candidate gene in 95% (401/421) of CCOC tumors including ARID1A (in 49% of tumors), PIK3CA (49%), TERT (20%), and TP53 (16%). Clustering of cancer driver mutations and RNA expression converged upon two distinct subclasses of CCOC. The first was dominated by ARID1A-mutated tumors with enriched expression of canonical CCOC genes and markers of platinum resistance; the second was largely comprised of tumors with TP53 mutations and enriched for the expression of genes involved in extracellular matrix organization and mesenchymal differentiation. Compared with the ARID1A-mutated group, women with TP53-mutated tumors were more likely to have advanced-stage disease, no antecedent history of endometriosis, and poorer survival, driven by their advanced stage at presentation. In women with ARID1A-mutated tumors, there was a trend toward a lower rate of response to first-line platinum-based therapy. CONCLUSIONS: Our study suggests that CCOC consists of two distinct molecular subclasses with distinct clinical presentation and outcomes, with potential relevance to both traditional and experimental therapy responsiveness. See related commentary by Lheureux, p. 4838.


Subject(s)
Adenocarcinoma, Clear Cell , Endometriosis , Ovarian Neoplasms , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Adenocarcinoma, Clear Cell/drug therapy , Adenocarcinoma, Clear Cell/genetics , Mutation , Endometriosis/genetics , Endometriosis/pathology
13.
J Exp Clin Cancer Res ; 41(1): 232, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35883104

ABSTRACT

BACKGROUND: Little is known about the role of global DNA methylation in recurrence and chemoresistance of high grade serous ovarian cancer (HGSOC). METHODS: We performed whole genome bisulfite sequencing and transcriptome sequencing in 62 primary and recurrent tumors from 28 patients with stage III/IV HGSOC, of which 11 patients carried germline, pathogenic BRCA1 and/or BRCA2 mutations. RESULTS: Landscapes of genome-wide methylation (on average 24.2 million CpGs per tumor) and transcriptomes in primary and recurrent tumors showed extensive heterogeneity between patients but were highly preserved in tumors from the same patient. We identified significant differences in the burden of differentially methylated regions (DMRs) in tumors from BRCA1/2 compared to non-BRCA1/2 carriers (mean 659 DMRs and 388 DMRs in paired comparisons respectively). We identified overexpression of immune pathways in BRCA1/2 carriers compared to non-carriers, implicating an increased immune response in improved survival (P = 0.006) in these BRCA1/2 carriers. CONCLUSION: These findings indicate methylome and gene expression programs established in the primary tumor are conserved throughout disease progression, even after extensive chemotherapy treatment, and that changes in methylation and gene expression are unlikely to serve as drivers for chemoresistance in HGSOC.


Subject(s)
DNA Methylation , Ovarian Neoplasms , Drug Resistance, Neoplasm/genetics , Female , Humans , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Transcriptome
14.
Cell Rep Med ; 3(3): 100542, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35492879

ABSTRACT

Endometriosis is associated with increased risk of epithelial ovarian cancers (EOCs). Using data from large endometriosis and EOC genome-wide association meta-analyses, we estimate the genetic correlation and evaluate the causal relationship between genetic liability to endometriosis and EOC histotypes, and identify shared susceptibility loci. We estimate a significant genetic correlation (rg) between endometriosis and clear cell (rg = 0.71), endometrioid (rg = 0.48), and high-grade serous (rg = 0.19) ovarian cancer, associations supported by Mendelian randomization analyses. Bivariate meta-analysis identified 28 loci associated with both endometriosis and EOC, including 19 with evidence for a shared underlying association signal. Differences in the shared risk suggest different underlying pathways may contribute to the relationship between endometriosis and the different histotypes. Functional annotation using transcriptomic and epigenomic profiles of relevant tissues/cells highlights several target genes. This comprehensive analysis reveals profound genetic overlap between endometriosis and EOC histotypes with valuable genomic targets for understanding the biological mechanisms linking the diseases.


Subject(s)
Endometriosis , Neoplasms, Glandular and Epithelial , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial/genetics , Endometriosis/genetics , Female , Genome-Wide Association Study , Humans , Neoplasms, Glandular and Epithelial/complications , Ovarian Neoplasms/genetics
15.
J Pathol ; 256(4): 388-401, 2022 04.
Article in English | MEDLINE | ID: mdl-34897700

ABSTRACT

ARID1A (BAF250a) is a component of the SWI/SNF chromatin modifying complex, plays an important tumour suppressor role, and is considered prognostic in several malignancies. However, in ovarian carcinomas there are contradictory reports on its relationship to outcome, immune response, and correlation with clinicopathological features. We assembled a series of 1623 endometriosis-associated ovarian carcinomas, including 1078 endometrioid (ENOC) and 545 clear cell (CCOC) ovarian carcinomas, through combining resources of the Ovarian Tumor Tissue Analysis (OTTA) Consortium, the Canadian Ovarian Unified Experimental Resource (COEUR), local, and collaborative networks. Validated immunohistochemical surrogate assays for ARID1A mutations were applied to all samples. We investigated associations between ARID1A loss/mutation, clinical features, outcome, CD8+ tumour-infiltrating lymphocytes (CD8+ TILs), and DNA mismatch repair deficiency (MMRd). ARID1A loss was observed in 42% of CCOCs and 25% of ENOCs. We found no associations between ARID1A loss and outcomes, stage, age, or CD8+ TIL status in CCOC. Similarly, we found no association with outcome or stage in endometrioid cases. In ENOC, ARID1A loss was more prevalent in younger patients (p = 0.012) and was associated with MMRd (p < 0.001) and the presence of CD8+ TILs (p = 0.008). Consistent with MMRd being causative of ARID1A mutations, in a subset of ENOCs we also observed an association with ARID1A loss-of-function mutation as a result of small indels (p = 0.035, versus single nucleotide variants). In ENOC, the association with ARID1A loss, CD8+ TILs, and age appears confounded by MMRd status. Although this observation does not explicitly rule out a role for ARID1A influence on CD8+ TIL infiltration in ENOC, given current knowledge regarding MMRd, it seems more likely that effects are dominated by the hypermutation phenotype. This large dataset with consistently applied biomarker assessment now provides a benchmark for the prevalence of ARID1A loss-of-function mutations in endometriosis-associated ovarian cancers and brings clarity to the prognostic significance. © 2021 The Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma , Endometriosis , Ovarian Neoplasms , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Brain Neoplasms , CD8-Positive T-Lymphocytes/pathology , Canada , Colorectal Neoplasms , DNA-Binding Proteins/genetics , Endometriosis/genetics , Endometriosis/pathology , Female , Humans , Neoplastic Syndromes, Hereditary , Nuclear Proteins/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Prognosis , Transcription Factors/genetics
16.
J Med Genet ; 59(7): 632-643, 2022 07.
Article in English | MEDLINE | ID: mdl-34844974

ABSTRACT

BACKGROUND: Epithelial tubo-ovarian cancer (EOC) has high mortality partly due to late diagnosis. Prevention is available but may be associated with adverse effects. A multifactorial risk model based on known genetic and epidemiological risk factors (RFs) for EOC can help identify women at higher risk who could benefit from targeted screening and prevention. METHODS: We developed a multifactorial EOC risk model for women of European ancestry incorporating the effects of pathogenic variants (PVs) in BRCA1, BRCA2, RAD51C, RAD51D and BRIP1, a Polygenic Risk Score (PRS) of arbitrary size, the effects of RFs and explicit family history (FH) using a synthetic model approach. The PRS, PV and RFs were assumed to act multiplicatively. RESULTS: Based on a currently available PRS for EOC that explains 5% of the EOC polygenic variance, the estimated lifetime risks under the multifactorial model in the general population vary from 0.5% to 4.6% for the first to 99th percentiles of the EOC risk distribution. The corresponding range for women with an affected first-degree relative is 1.9%-10.3%. Based on the combined risk distribution, 33% of RAD51D PV carriers are expected to have a lifetime EOC risk of less than 10%. RFs provided the widest distribution, followed by the PRS. In an independent partial model validation, absolute and relative 5-year risks were well calibrated in quintiles of predicted risk. CONCLUSION: This multifactorial risk model can facilitate stratification, in particular among women with FH of cancer and/or moderate-risk and high-risk PVs. The model is available via the CanRisk Tool (www.canrisk.org).


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial/epidemiology , Carcinoma, Ovarian Epithelial/genetics , Female , Genetic Predisposition to Disease , Humans , Multifactorial Inheritance/genetics , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Risk Factors
17.
Am J Hum Genet ; 109(1): 116-135, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34965383

ABSTRACT

The high-grade serous ovarian cancer (HGSOC) risk locus at chromosome 1p34.3 resides within a frequently amplified genomic region signifying the presence of an oncogene. Here, we integrate in silico variant-to-function analysis with functional studies to characterize the oncogenic potential of candidate genes in the 1p34.3 locus. Fine mapping of genome-wide association statistics identified candidate causal SNPs local to H3K27ac-demarcated enhancer regions that exhibit allele-specific binding for CTCF in HGSOC and normal fallopian tube secretory epithelium cells (FTSECs). SNP risk associations colocalized with eQTL for six genes (DNALI1, GNL2, RSPO1, SNIP1, MEAF6, and LINC01137) that are more highly expressed in carriers of the risk allele, and three (DNALI1, GNL2, and RSPO1) were upregulated in HGSOC compared to normal ovarian surface epithelium cells and/or FTSECs. Increased expression of GNL2 and MEAF6 was associated with shorter survival in HGSOC with 1p34.3 amplifications. Despite its activation of ß-catenin signaling, RSPO1 overexpression exerted no effects on proliferation or colony formation in our study of ovarian cancer and FTSECs. Instead, GNL2, MEAF6, and SNIP1 silencing impaired in vitro ovarian cancer cell growth. Additionally, GNL2 silencing diminished xenograft tumor formation, whereas overexpression stimulated proliferation and colony formation in FTSECs. GNL2 influences 60S ribosomal subunit maturation and global protein synthesis in ovarian cancer and FTSECs, providing a potential mechanism of how GNL2 upregulation might promote ovarian cancer development and mediate genetic susceptibility of HGSOC.


Subject(s)
Chromosomes, Human, Pair 1 , Cystadenocarcinoma, Serous/genetics , GTP-Binding Proteins/genetics , Genetic Predisposition to Disease , Ovarian Neoplasms/genetics , Quantitative Trait Loci , Alleles , Alternative Splicing , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Chromatin Immunoprecipitation Sequencing , Cystadenocarcinoma, Serous/pathology , DNA Copy Number Variations , Disease Models, Animal , Enhancer Elements, Genetic , Female , GTP-Binding Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Silencing , Genetic Association Studies , Genome-Wide Association Study , Heterografts , Humans , Mice , Neoplasm Grading , Odds Ratio , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Polymorphism, Single Nucleotide , Prognosis , Transcriptome , White People
18.
Cell Rep ; 37(13): 110146, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34965417

ABSTRACT

Germline pathogenic mutations in BReast CAncer (BRCA1) genes are thought to drive normal fallopian tube epithelial (FTE) cell transformation to high-grade serous ovarian cancer. No human models capture the sequence of events for disease initiation and progression. Here, we generate induced pluripotent stem cells (iPSCs) from healthy individuals and young ovarian cancer patients with germline pathogenic BRCA1 mutations (BRCA1mut). Following differentiation into FTE organoids, BRCA1mut lines exhibit cellular abnormalities consistent with neoplastic transformation compared to controls. BRCA1mut organoids show an increased production of cancer-specific proteins and survival following transplantation into mice. Organoids from women with the most aggressive ovarian cancer show the greatest pathology, indicating the potential value to predict clinical severity prior to disease onset. These human FTE organoids from BRCA1mut carriers provide a faithful physiological in vitro model of FTE lesion generation and early carcinogenesis. This platform can be used for personalized mechanistic and drug screening studies.


Subject(s)
BRCA1 Protein/genetics , Carcinogenesis/pathology , Fallopian Tubes/pathology , Germ-Line Mutation , Induced Pluripotent Stem Cells/pathology , Organoids/pathology , Ovarian Neoplasms/pathology , Animals , Apoptosis , Carcinogenesis/genetics , Carcinogenesis/metabolism , Case-Control Studies , Cell Differentiation , Cell Proliferation , Fallopian Tubes/metabolism , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Mice, Nude , Organoids/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
19.
Sci Adv ; 7(48): eabf6123, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34818047

ABSTRACT

Critical developmental "master transcription factors" (MTFs) can be subverted during tumorigenesis to control oncogenic transcriptional programs. Current approaches to identifying MTFs rely on ChIP-seq data, which is unavailable for many cancers. We developed the CaCTS (Cancer Core Transcription factor Specificity) algorithm to prioritize candidate MTFs using pan-cancer RNA sequencing data. CaCTS identified candidate MTFs across 34 tumor types and 140 subtypes including predictions for cancer types/subtypes for which MTFs are unknown, including e.g. PAX8, SOX17, and MECOM as candidates in ovarian cancer (OvCa). In OvCa cells, consistent with known MTF properties, these factors are required for viability, lie proximal to superenhancers, co-occupy regulatory elements globally, co-bind loci encoding OvCa biomarkers, and are sensitive to pharmacologic inhibition of transcription. Our predictions of MTFs, especially for tumor types with limited understanding of transcriptional drivers, pave the way to therapeutic targeting of MTFs in a broad spectrum of cancers.

20.
Cancers (Basel) ; 13(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34439109

ABSTRACT

Family history remains one of the strongest risk factors for breast cancer. It is well established that women with a first-degree relative affected by breast cancer are twice as likely to develop the disease themselves. Twins studies indicate that this is most likely due to shared genetics rather than shared epidemiological/lifestyle risk factors. Linkage and targeted sequencing studies have shown that rare high- and moderate-penetrance germline variants in genes involved in the DNA damage response (DDR) including BRCA1, BRCA2, PALB2, ATM, and TP53 are responsible for a proportion of breast cancer cases. However, breast cancer is a heterogeneous disease, and there is now strong evidence that different risk alleles can predispose to different subtypes of breast cancer. Here, we review the associations between the different genes and subtype-specificity of breast cancer based on the most comprehensive genetic studies published. Genome-wide association studies (GWAS) have also been used to identify an additional hereditary component of breast cancer, and have identified hundreds of common, low-penetrance susceptibility alleles. The combination of these low penetrance risk variants, summed as a polygenic risk score (PRS), can identify individuals across the spectrum of disease risk. However, there remains a substantial bottleneck between the discovery of GWAS-risk variants and their contribution to tumorigenesis mainly because the majority of these variants map to the non-protein coding genome. A range of functional genomic approaches are needed to identify the causal risk variants and target susceptibility genes and establish their underlying role in disease biology. We discuss how the application of these multidisciplinary approaches to understand genetic risk for breast cancer can be used to identify individuals in the population that may benefit from clinical interventions including screening for early detection and prevention, and treatment strategies to reduce breast cancer-related mortalities.

SELECTION OF CITATIONS
SEARCH DETAIL
...