Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
BMC Cancer ; 24(1): 209, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360633

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) play an important role in the tumor microenvironment. Despite the well-known in vitro antitumoral effect of vitamin D3 (VD3), its impact on breast CAFs is almost unknown. In this study, we analyzed the ex vivo effects of calcitriol on CAFs isolated from breast cancer tissues. METHODS: CAFs were cultured with 1 and 10 nM calcitriol and their phenotype; gene expression, protein expression, and secretion were assessed. Calcitriol-treated CAFs-conditioned media (CM) were used to analyze the effect of CAFs on the migration and protein expression of MCF-7 and MDA-MB-231 cells. RESULTS: Tumor tissues from VD3-deficient patients exhibited lower levels of ß-catenin and TGFß1, along with higher levels of CYP24A1 compared to VD3-normal patients. In VD3-deficient patients, CAF infiltration was inversely associated with CYP24A1 levels and positively correlated with OPN levels. Calcitriol diminished CAFs' viability, but this effect was weaker in premenopausal and VD3-normal patients. Calcitriol reduced mRNA expression of CCL2, MMP9, TNC, and increased PDPN, SPP1, and TIMP1. It also decreased the secretion of CCL2, TNC, and the activity of MMP-2, while increasing cellular levels of TIMP1 in CAFs from all patient groups. In nonmetastatic and postmenopausal patients, PDPN surface expression increased, and CAFs CM from these groups decreased MCF-7 cell migration after ex vivo calcitriol treatment. In premenopausal and VD3-deficient patients, calcitriol reduced IDO1 expression in CAFs. Calcitriol-treated CAFs CM from these patients decreased OPN expression in MCF-7 and/or MDA-MB-231 cells. However, in premenopausal patients, calcitriol-treated CAFs CM also decreased E-cadherin expression in both cell lines. CONCLUSION: The effects of calcitriol on breast CAFs, both at the gene and protein levels, are complex, reflecting the immunosuppressive or procancer properties of CAFs. The anticancer polarization of CAFs following ex vivo calcitriol treatment may result from decreased CCL2, TNC (gene and protein), MMP9, and MMP-2, while the opposite effect may result from increased PDPN, TIMP1 (gene and protein), and SPP1. Despite these multifaceted effects of calcitriol on molecule expression, CAFs' CMs from nonmetastatic and postmenopausal patients treated ex vivo with calcitriol decreased the migration of MCF-7 cells.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Humans , Female , Cancer-Associated Fibroblasts/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 2/metabolism , Vitamin D3 24-Hydroxylase/genetics , Vitamin D3 24-Hydroxylase/metabolism , Cholecalciferol , Calcitriol/pharmacology , Fibroblasts/metabolism , Cell Movement/genetics , Cell Line, Tumor , Tumor Microenvironment/genetics
2.
Cancers (Basel) ; 16(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38275903

ABSTRACT

The accessory parotid gland (APG, Vth level) differs in histological structure from main parotid tissue. This gives rise to the hypothesis, mirrored in clinical observations, that the representation of tumours is different than in the rest of the gland. The aim of the study was to analyse the epidemiological and histological differences of parotid tumours located in regions I-V, with particular emphasis on the distinctiveness of region V. To define the epidemiological factors that will indicate the risk of histological malignancy from clinically benign appearance, multicentre prospective studies conducted between 2017-2021 by five Head and Neck Surgery University Departments, cooperating within the Polish Salivary Network Database 1929 patients (1048 women and 881 men), were included. The age, gender, patient occupation, place of inhabitation, tumour size, clinical features of malignancy, histology, and facial nerve (FN) paresis were analysed for superficial (I_II) and deep (III_IV) lobes and with special regard to the tumours affecting region V. Twenty eight tumours were located exclusively in region V (1.45% total) and seventy-two tumours were found in region V exhibiting extensions to neighbouring regions (3.7% total), characterised as significantly younger and less frequent in retirees. In I-IV regions, approximately 90% of tumours were benign, with pleomorphic adenoma (PA) and Whartin tumour (WT) predominance. In region V, PA exceeded 75% but WT were casuistic (2/28). Incidences of malignancies in region V was 40% but clinical signs of malignancy were evident only in tumours > 4 cm or in the presence of FN paresis. In 19% of patients with a benign appearance, imaging revealed malignancy; however, 38% of patients showed false negative results both in terms of clinical and radiological features of malignancy. Logistic regression models in 28 patients with tumours located exclusively in region V vs. 1901 other patients and in 100 patients with V extension vs. 1829 other patients showed no clinical symptoms of malignancy binding with final malignant tumour histology as a single variable or in combination with other variables. The logistic regression models obtained in this study show strong linkage between tumour location and predictors (age, male gender, and tumour diameter) and also aimed to function as a good classifier. Our conclusion is that, despite the very clear image of the mid-cheek tumour which is easily accessible in palpation and ultrasound examination, it is necessary to improve oncological vigilance and preoperative patient preparation.

3.
Nat Commun ; 14(1): 8484, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38123565

ABSTRACT

The naked mole rat (NMR), Heterocephalus glaber, the longest-living rodent, provides a unique opportunity to explore how evolution has shaped adult stem cell (ASC) activity and tissue function with increasing lifespan. Using cumulative BrdU labelling and a quantitative imaging approach to track intestinal ASCs (Lgr5+) in their native in vivo state, we find an expanded pool of Lgr5+ cells in NMRs, and these cells specifically at the crypt base (Lgr5+CBC) exhibit slower division rates compared to those in short-lived mice but have a similar turnover as human LGR5+CBC cells. Instead of entering quiescence (G0), NMR Lgr5+CBC cells reduce their division rates by prolonging arrest in the G1 and/or G2 phases of the cell cycle. Moreover, we also observe a higher proportion of differentiated cells in NMRs that confer enhanced protection and function to the intestinal mucosa which is able to detect any chemical imbalance in the luminal environment efficiently, triggering a robust pro-apoptotic, anti-proliferative response within the stem/progenitor cell zone.


Subject(s)
Adult Stem Cells , Longevity , Mice , Humans , Animals , Intestinal Mucosa/metabolism , Intestines , Adult Stem Cells/metabolism , Receptors, G-Protein-Coupled/metabolism , Mole Rats
4.
Clin Cancer Res ; 29(18): 3691-3705, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37574209

ABSTRACT

PURPOSE: The TNT trial (NCT00532727) showed no evidence of carboplatin superiority over docetaxel in metastatic triple-negative breast cancer (mTNBC), but carboplatin benefit was observed in the germline BRCA1/2 mutation subgroup. Broader response-predictive biomarkers are needed. We explored the predictive ability of DNA damage response (DDR) and immune markers. EXPERIMENTAL DESIGN: Tumor-infiltrating lymphocytes were evaluated for 222 of 376 patients. Primary tumors (PT) from 186 TNT participants (13 matched recurrences) were profiled using total RNA sequencing. Four transcriptional DDR-related and 25 immune-related signatures were evaluated. We assessed their association with objective response rate (ORR) and progression-free survival (PFS). Conditional inference forest clustering was applied to integrate multimodal data. The biology of subgroups was characterized by 693 gene expression modules and other markers. RESULTS: Transcriptional DDR-related biomarkers were not predictive of ORR to either treatment overall. Changes from PT to recurrence were demonstrated; in chemotherapy-naïve patients, transcriptional DDR markers separated carboplatin responders from nonresponders (P values = 0.017; 0.046). High immune infiltration was associated with docetaxel ORR (interaction P values < 0.05). Six subgroups were identified; the immune-enriched cluster had preferential docetaxel response [62.5% (D) vs. 29.4% (C); P = 0.016]. The immune-depleted cluster had preferential carboplatin response [8.0% (D) vs. 40.0% (C); P = 0.011]. DDR-related subgroups were too small to assess ORR. CONCLUSIONS: High immune features predict docetaxel response, and high DDR signature scores predict carboplatin response in treatment-naïve mTNBC. Integrating multimodal DDR and immune-related markers identifies subgroups with differential treatment sensitivity. Treatment options for patients with immune-low and DDR-proficient tumors remains an outstanding need. Caution is needed using PT-derived transcriptional signatures to direct treatment in mTNBC, particularly DDR-related markers following prior chemotherapy.


Subject(s)
BRCA1 Protein , Triple Negative Breast Neoplasms , Humans , Carboplatin , BRCA1 Protein/genetics , Docetaxel/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , BRCA2 Protein/genetics , Biomarkers , DNA Damage , Antineoplastic Combined Chemotherapy Protocols/adverse effects
5.
Nat Genet ; 55(8): 1311-1323, 2023 08.
Article in English | MEDLINE | ID: mdl-37524790

ABSTRACT

SF3B1 hotspot mutations are associated with a poor prognosis in several tumor types and lead to global disruption of canonical splicing. Through synthetic lethal drug screens, we identify that SF3B1 mutant (SF3B1MUT) cells are selectively sensitive to poly (ADP-ribose) polymerase inhibitors (PARPi), independent of hotspot mutation and tumor site. SF3B1MUT cells display a defective response to PARPi-induced replication stress that occurs via downregulation of the cyclin-dependent kinase 2 interacting protein (CINP), leading to increased replication fork origin firing and loss of phosphorylated CHK1 (pCHK1; S317) induction. This results in subsequent failure to resolve DNA replication intermediates and G2/M cell cycle arrest. These defects are rescued through CINP overexpression, or further targeted by a combination of ataxia-telangiectasia mutated and PARP inhibition. In vivo, PARPi produce profound antitumor effects in multiple SF3B1MUT cancer models and eliminate distant metastases. These data provide the rationale for testing the clinical efficacy of PARPi in a biomarker-driven, homologous recombination proficient, patient population.


Subject(s)
Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Mutation , Transcription Factors/genetics , Neoplasms/drug therapy , Neoplasms/genetics , BRCA1 Protein/genetics , Cell Line, Tumor , RNA Splicing Factors/genetics , Phosphoproteins/genetics
6.
Front Immunol ; 14: 1204224, 2023.
Article in English | MEDLINE | ID: mdl-37441083

ABSTRACT

Background: Intracellular communication within the tumour is complex and extracellular vesicles (EVs) have been identified as major contributing factors for the cell-to-cell communication in the local and distant tumour environments. Here, we examine the differential effects of breast cancer (BC) subtype-specific patient serum and cell-line derived EVs in the regulation of T cell mediated immune responses. Methods: Ultracentrifugation was used to isolate EVs from sera of 63 BC patients, 15 healthy volunteers and 4 human breast cancer cell lines. Longitudinal blood draws for EV isolation for patients on neoadjuvant chemotherapy was also performed. Characterization of EVs was performed by Nanoparticle Tracking Analysis (NTA), transmission electron microscopy (TEM) and immunoblotting. CD63 staining was performed on a tissue microarray of 218 BC patients. In-house bioinformatics algorithms were utilized for the computation of EV associated expression scores within The Cancer Genome Atlas (TCGA) and correlated with tumour infiltrating lymphocyte (TIL) scores. In vitro stimulation of PBMCs with EVs from serum and cell-line derived EVs was performed and changes in the immune phenotypes characterized by flow cytometry. Cytokine profiles were assessed using a 105-plex immunoassay or IL10 ELISA. Results: Patients with triple negative breast cancers (TNBCs) exhibited the lowest number of EVs in the sera; whilst the highest was detected in ER+HER2+ cancers; reflected also in the higher level of CD63+ vesicles found within the ER+HER2+ local tumour microenvironment. Transcriptomic analysis of the TCGA data identified that samples assigned with lower EV scores had significantly higher abundance of CD4+ memory activated T cells, T follicular cells and CD8 T cells, plasma, and memory B cells; whilst samples with high EV scores were more enriched for anti-inflammatory M2 macrophages and mast cells. A negative correlation between EV expression scores and stromal TIL counts was also observed. In vitro experiments confirmed that circulating EVs within breast cancer subtypes have functionally differing immunomodulatory capabilities, with EVs from patients with the most aggressive breast cancer subtype (TNBCs) demonstrating the most immune-suppressive phenotype (decreased CD3+HLA-DR+ but increased CD3+PD-L1 T cells, increased CD4+CD127-CD25hi T regulatory cells with associated increase in IL10 cytokine production). In depth assessment of the cytokine modulation triggered by the serum/cell line derived exosomes confirmed differential inflammatory cytokine profiles across differing breast cancer subtypes. Studies using the MDA-231 TNBC breast cancer cell-line derived EVs provided further support that TNBC EVs induced the most immunosuppressive response within PBMCs. Discussion: Our study supports further investigations into how tumour derived EVs are a mechanism that cancers can exploit to promote immune suppression; and breast cancer subtypes produce EVs with differing immunomodulatory capabilities. Understanding the intracellular/extracellular pathways implicated in alteration from active to suppressed immune state may provide a promising way forward for restoring immune competence in specific breast cancer patient populations.


Subject(s)
Extracellular Vesicles , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , Interleukin-10/metabolism , Cytokines/metabolism , MCF-7 Cells , Extracellular Vesicles/metabolism , Tumor Microenvironment
7.
J Pathol ; 260(4): 376-389, 2023 08.
Article in English | MEDLINE | ID: mdl-37230111

ABSTRACT

The suggestion that the systemic immune response in lymph nodes (LNs) conveys prognostic value for triple-negative breast cancer (TNBC) patients has not previously been investigated in large cohorts. We used a deep learning (DL) framework to quantify morphological features in haematoxylin and eosin-stained LNs on digitised whole slide images. From 345 breast cancer patients, 5,228 axillary LNs, cancer-free and involved, were assessed. Generalisable multiscale DL frameworks were developed to capture and quantify germinal centres (GCs) and sinuses. Cox regression proportional hazard models tested the association between smuLymphNet-captured GC and sinus quantifications and distant metastasis-free survival (DMFS). smuLymphNet achieved a Dice coefficient of 0.86 and 0.74 for capturing GCs and sinuses, respectively, and was comparable to an interpathologist Dice coefficient of 0.66 (GC) and 0.60 (sinus). smuLymphNet-captured sinuses were increased in LNs harbouring GCs (p < 0.001). smuLymphNet-captured GCs retained clinical relevance in LN-positive TNBC patients whose cancer-free LNs had on average ≥2 GCs, had longer DMFS (hazard ratio [HR] = 0.28, p = 0.02) and extended GCs' prognostic value to LN-negative TNBC patients (HR = 0.14, p = 0.002). Enlarged smuLymphNet-captured sinuses in involved LNs were associated with superior DMFS in LN-positive TNBC patients in a cohort from Guy's Hospital (multivariate HR = 0.39, p = 0.039) and with distant recurrence-free survival in 95 LN-positive TNBC patients of the Dutch-N4plus trial (HR = 0.44, p = 0.024). Heuristic scoring of subcapsular sinuses in LNs of LN-positive Tianjin TNBC patients (n = 85) cross-validated the association of enlarged sinuses with shorter DMFS (involved LNs: HR = 0.33, p = 0.029 and cancer-free LNs: HR = 0.21 p = 0.01). Morphological LN features reflective of cancer-associated responses are robustly quantifiable by smuLymphNet. Our findings further strengthen the value of assessment of LN properties beyond the detection of metastatic deposits for prognostication of TNBC patients. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Deep Learning , Triple Negative Breast Neoplasms , Humans , Lymph Nodes/pathology , Lymphatic Metastasis/pathology , Neoplasm Staging , Prognosis , Retrospective Studies , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/pathology , Female , Clinical Trials as Topic
8.
Clin Cancer Res ; 28(20): 4494-4508, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36161312

ABSTRACT

PURPOSE: To identify potential immune targets in post-neoadjuvant chemotherapy (NAC)-resistant triple-negative breast cancer (TNBC) and ER+HER2- breast cancer disease. EXPERIMENTAL DESIGN: Following pathology review, 153 patients were identified as having residual cancer burden (RCB) II/III disease (TNBC n = 80; ER+HER2-n = 73). Baseline pre-NAC samples were available for evaluation for 32 of 80 TNBC and 36 of 73 ER+HER2- cases. Bright-field hematoxylin and eosin assessment allowed for tumor-infiltrating lymphocyte (TIL) evaluation in all cases. Multiplexed immunofluorescence was used to identify the abundance and distribution of immune cell subsets. Levels of checkpoints including PD-1/PD-L1 expression were also quantified. Findings were then validated using expression profiling of cancer and immune-related genes. Cytometry by time-of-flight characterized the dynamic changes in circulating immune cells with NAC. RESULTS: RCB II/III TNBC and ER+HER2- breast cancer were immunologically "cold" at baseline and end of NAC. Although the distribution of immune cell subsets across subtypes was similar, the mRNA expression profiles were both subtype- and chemotherapy-specific. TNBC RCB II/III disease was enriched with genes related to neutrophil degranulation, and displayed strong interplay across immune and cancer pathways. We observed similarities in the dynamic changes in B-cell biology following NAC irrespective of subtype. However, NAC induced changes in the local and circulating tumor immune microenvironment (TIME) that varied by subtype and response. Specifically, in TNBC residual disease, we observed downregulation of stimulatory (CD40/OX40L) and inhibitory (PD-L1/PD-1) receptor expression and an increase in NK cell populations (especially non-cytolytic, exhausted CD56dimCD16-) within both the local TIME and peripheral white cell populations. CONCLUSIONS: This study identifies several potential immunologic pathways in residual disease, which may be targeted to benefit high-risk patients.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , B7-H1 Antigen/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Eosine Yellowish-(YS)/therapeutic use , Female , Hematoxylin , Humans , Neoadjuvant Therapy , Neutrophils/metabolism , Programmed Cell Death 1 Receptor/therapeutic use , RNA, Messenger , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Tumor Microenvironment
9.
NPJ Breast Cancer ; 7(1): 86, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34226563

ABSTRACT

The level of stromal tumor-infiltrating lymphocytes (sTILs) in triple-negative (TNBC) and HER2-positive breast cancers convey prognostic information. The importance of systemic immunity to local immunity is unknown in breast cancer. We previously demonstrated that histological alterations in axillary lymph nodes (LNs) carry clinical relevance. Here, we capture local immune responses by scoring TILs at the primary tumor and systemic immune responses by recording the formation of secondary follicles, also known as germinal centers, in 2,857 cancer-free and involved axillary LNs on haematoxylin and eosin (H&E) stained sections from a retrospective cohort of 161 LN-positive triple-negative and HER2-positive breast cancer patients. Our data demonstrate that the number of germinal center formations across all cancer-free LNs, similar to high levels of TILs, is associated with a good prognosis in low TILs TNBC. This highlights the importance of assessing both primary and LN immune responses for prognostication and for future breast cancer research.

10.
Nat Commun ; 12(1): 3364, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099649

ABSTRACT

Necroptosis is a lytic, inflammatory form of cell death that not only contributes to pathogen clearance but can also lead to disease pathogenesis. Necroptosis is triggered by RIPK3-mediated phosphorylation of MLKL, which is thought to initiate MLKL oligomerisation, membrane translocation and membrane rupture, although the precise mechanism is incompletely understood. Here, we show that K63-linked ubiquitin chains are attached to MLKL during necroptosis and that ubiquitylation of MLKL at K219 significantly contributes to the cytotoxic potential of phosphorylated MLKL. The K219R MLKL mutation protects animals from necroptosis-induced skin damage and renders cells resistant to pathogen-induced necroptosis. Mechanistically, we show that ubiquitylation of MLKL at K219 is required for higher-order assembly of MLKL at membranes, facilitating its rupture and necroptosis. We demonstrate that K219 ubiquitylation licenses MLKL activity to induce lytic cell death, suggesting that necroptotic clearance of pathogens as well as MLKL-dependent pathologies are influenced by the ubiquitin-signalling system.


Subject(s)
Herpesviridae Infections/metabolism , Lysine/metabolism , Protein Kinases/metabolism , Skin/metabolism , Animals , Cell Line , Cells, Cultured , HEK293 Cells , HT29 Cells , Herpesviridae Infections/genetics , Herpesviridae Infections/virology , Humans , Lysine/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Muromegalovirus/physiology , NIH 3T3 Cells , Necroptosis/genetics , Necrosis , Protein Kinases/genetics , Skin/pathology , Ubiquitination
11.
Cancer Res ; 81(4): 847-859, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33509944

ABSTRACT

Triple-negative breast cancers (TNBC) are resistant to standard-of-care chemotherapy and lack known targetable driver gene alterations. Identification of novel drivers could aid the discovery of new treatment strategies for this hard-to-treat patient population, yet studies using high-throughput and accurate models to define the functions of driver genes in TNBC to date have been limited. Here, we employed unbiased functional genomics screening of the 200 most frequently mutated genes in breast cancer, using spheroid cultures to model in vivo-like conditions, and identified the histone acetyltransferase CREBBP as a novel tumor suppressor in TNBC. CREBBP protein expression in patient tumor samples was absent in 8% of TNBCs and at a high frequency in other tumors, including squamous lung cancer, where CREBBP-inactivating mutations are common. In TNBC, CREBBP alterations were associated with higher genomic heterogeneity and poorer patient survival and resulted in upregulation and dependency on a FOXM1 proliferative program. Targeting FOXM1-driven proliferation indirectly with clinical CDK4/6 inhibitors (CDK4/6i) selectively impaired growth in spheroids, cell line xenografts, and patient-derived models from multiple tumor types with CREBBP mutations or loss of protein expression. In conclusion, we have identified CREBBP as a novel driver in aggressive TNBC and identified an associated genetic vulnerability in tumor cells with alterations in CREBBP and provide a preclinical rationale for assessing CREBBP alterations as a biomarker of CDK4/6i response in a new patient population. SIGNIFICANCE: This study demonstrates that CREBBP genomic alterations drive aggressive TNBC, lung cancer, and lymphomas and may be selectively treated with clinical CDK4/6 inhibitors.


Subject(s)
CREB-Binding Protein/physiology , Carcinogenesis/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Animals , CREB-Binding Protein/genetics , Cell Proliferation/genetics , Cells, Cultured , Drug Screening Assays, Antitumor/methods , Female , Genomics/methods , HCT116 Cells , HEK293 Cells , Humans , Mice , Mice, Inbred NOD , Mice, Nude , Molecular Targeted Therapy , Mutation , Neoplasm Invasiveness , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Xenograft Model Antitumor Assays
12.
EMBO Mol Med ; 12(6): e10979, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32419365

ABSTRACT

Drugs that mobilise the immune system against cancer are dramatically improving care for many people. Dying cancer cells play an active role in inducing anti-tumour immunity but not every form of death can elicit an immune response. Moreover, resistance to apoptosis is a major problem in cancer treatment and disease control. While the term "immunogenic cell death" is not fully defined, activation of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) can induce a type of death that mobilises the immune system against cancer. However, no clinical treatment protocols have yet been established that would harness the immunogenic potential of RIPK1. Here, we report the first pre-clinical application of an in vivo treatment protocol for soft-tissue sarcoma that directly engages RIPK1-mediated immunogenic cell death. We find that RIPK1-mediated cell death significantly improves local disease control, increases activation of CD8+ T cells as well as NK cells, and enhances the survival benefit of immune checkpoint blockade. Our findings warrant a clinical trial to assess the survival benefit of RIPK1-induced cell death in patients with advanced disease at limb extremities.


Subject(s)
Immunogenic Cell Death , Sarcoma , Apoptosis , CD8-Positive T-Lymphocytes/metabolism , Humans , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Sarcoma/therapy , Signal Transduction , Tumor Necrosis Factor-alpha
13.
Sci Transl Med ; 11(513)2019 10 09.
Article in English | MEDLINE | ID: mdl-31597756

ABSTRACT

Innate-like tissue-resident γδ T cell compartments capable of protecting against carcinogenesis are well established in mice. Conversely, the degree to which they exist in humans, their potential properties, and their contributions to host benefit are mostly unresolved. Here, we demonstrate that healthy human breast harbors a distinct γδ T cell compartment, primarily expressing T cell receptor (TCR) Vδ1 chains, by comparison to Vδ2 chains that predominate in peripheral blood. Breast-resident Vδ1+ cells were functionally skewed toward cytolysis and IFN-γ production, but not IL-17, which has been linked with inflammatory pathologies. Breast-resident Vδ1+ cells could be activated innately via the NKG2D receptor, whereas neighboring CD8+ αß T cells required TCR signaling. A comparable population of Vδ1+ cells was found in human breast tumors, and when paired tumor and nonmalignant samples from 11 patients with triple-negative breast cancer were analyzed, progression-free and overall survival correlated with Vδ1+ cell representation, but not with either total γδ T cells or Vδ2+ T cells. As expected, progression-free survival also correlated with αß TCRs. However, whereas in most cases TCRαß repertoires focused, typical of antigen-specific responses, this was not observed for Vδ1+ cells, consistent with their innate-like responsiveness. Thus, maximal patient benefit may accrue from the collaboration of innate-like responses mounted by tissue-resident Vδ1+ compartments and adaptive responses mounted by αß T cells.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Animals , CD8-Positive T-Lymphocytes/metabolism , Female , Humans , Interleukin-17/metabolism , Mice , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Triple Negative Breast Neoplasms/mortality
14.
Clin Cancer Res ; 24(20): 5098-5111, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30068707

ABSTRACT

Purpose: Highly aggressive triple-negative breast cancers (TNBCs) lack validated therapeutic targets and have high risk of metastatic disease. Folate receptor alpha (FRα) is a central mediator of cell growth regulation that could serve as an important target for cancer therapy.Experimental Design: We evaluated FRα expression in breast cancers by genomic (n = 3,414) and IHC (n = 323) analyses and its association with clinical parameters and outcomes. We measured the functional contributions of FRα in TNBC biology by RNA interference and the antitumor functions of an antibody recognizing FRα (MOv18-IgG1), in vitro, and in human TNBC xenograft models.Results: FRα is overexpressed in significant proportions of aggressive basal like/TNBC tumors, and in postneoadjuvant chemotherapy-residual disease associated with a high risk of relapse. Expression is associated with worse overall survival. TNBCs show dysregulated expression of thymidylate synthase, folate hydrolase 1, and methylenetetrahydrofolate reductase, involved in folate metabolism. RNA interference to deplete FRα decreased Src and ERK signaling and resulted in reduction of cell growth. An anti-FRα antibody (MOv18-IgG1) conjugated with a Src inhibitor significantly restricted TNBC xenograft growth. Moreover, MOv18-IgG1 triggered immune-dependent cancer cell death in vitro by human volunteer and breast cancer patient immune cells, and significantly restricted orthotopic and patient-derived xenograft growth.Conclusions: FRα is overexpressed in high-grade TNBC and postchemotherapy residual tumors. It participates in cancer cell signaling and presents a promising target for therapeutic strategies such as ADCs, or passive immunotherapy priming Fc-mediated antitumor immune cell responses. Clin Cancer Res; 24(20); 5098-111. ©2018 AACR.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Folate Receptor 1/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Animals , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Cell Line, Tumor , Cell Proliferation , Cell Survival/genetics , Disease Models, Animal , Female , Folate Receptor 1/genetics , Folate Receptor 1/metabolism , Gene Expression , Humans , Immunohistochemistry , Mice , Models, Biological , Molecular Targeted Therapy , Neoplasms, Basal Cell , RNA Interference , Signal Transduction , Triple Negative Breast Neoplasms/pathology , Tumor Burden , Xenograft Model Antitumor Assays
15.
Nat Med ; 24(5): 628-637, 2018 05.
Article in English | MEDLINE | ID: mdl-29713086

ABSTRACT

Germline mutations in BRCA1/2 predispose individuals to breast cancer (termed germline-mutated BRCA1/2 breast cancer, gBRCA-BC) by impairing homologous recombination (HR) and causing genomic instability. HR also repairs DNA lesions caused by platinum agents and PARP inhibitors. Triple-negative breast cancers (TNBCs) harbor subpopulations with BRCA1/2 mutations, hypothesized to be especially platinum-sensitive. Cancers in putative 'BRCAness' subgroups-tumors with BRCA1 methylation; low levels of BRCA1 mRNA (BRCA1 mRNA-low); or mutational signatures for HR deficiency and those with basal phenotypes-may also be sensitive to platinum. We assessed the efficacy of carboplatin and another mechanistically distinct therapy, docetaxel, in a phase 3 trial in subjects with unselected advanced TNBC. A prespecified protocol enabled biomarker-treatment interaction analyses in gBRCA-BC and BRCAness subgroups. The primary endpoint was objective response rate (ORR). In the unselected population (376 subjects; 188 carboplatin, 188 docetaxel), carboplatin was not more active than docetaxel (ORR, 31.4% versus 34.0%, respectively; P = 0.66). In contrast, in subjects with gBRCA-BC, carboplatin had double the ORR of docetaxel (68% versus 33%, respectively; biomarker, treatment interaction P = 0.01). Such benefit was not observed for subjects with BRCA1 methylation, BRCA1 mRNA-low tumors or a high score in a Myriad HRD assay. Significant interaction between treatment and the basal-like subtype was driven by high docetaxel response in the nonbasal subgroup. We conclude that patients with advanced TNBC benefit from characterization of BRCA1/2 mutations, but not BRCA1 methylation or Myriad HRD analyses, to inform choices on platinum-based chemotherapy. Additionally, gene expression analysis of basal-like cancers may also influence treatment selection.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Carboplatin/therapeutic use , Mutation/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Female , Homologous Recombination/genetics , Humans , Progression-Free Survival , Treatment Outcome
16.
Cancer Discov ; 8(4): 498-515, 2018 04.
Article in English | MEDLINE | ID: mdl-29610289

ABSTRACT

The cell adhesion glycoprotein E-cadherin (CDH1) is commonly inactivated in breast tumors. Precision medicine approaches that exploit this characteristic are not available. Using perturbation screens in breast tumor cells with CRISPR/Cas9-engineered CDH1 mutations, we identified synthetic lethality between E-cadherin deficiency and inhibition of the tyrosine kinase ROS1. Data from large-scale genetic screens in molecularly diverse breast tumor cell lines established that the E-cadherin/ROS1 synthetic lethality was not only robust in the face of considerable molecular heterogeneity but was also elicited with clinical ROS1 inhibitors, including foretinib and crizotinib. ROS1 inhibitors induced mitotic abnormalities and multinucleation in E-cadherin-defective cells, phenotypes associated with a defect in cytokinesis and aberrant p120 catenin phosphorylation and localization. In vivo, ROS1 inhibitors produced profound antitumor effects in multiple models of E-cadherin-defective breast cancer. These data therefore provide the preclinical rationale for assessing ROS1 inhibitors, such as the licensed drug crizotinib, in appropriately stratified patients.Significance: E-cadherin defects are common in breast cancer but are currently not targeted with a precision medicine approach. Our preclinical data indicate that licensed ROS1 inhibitors, including crizotinib, should be repurposed to target E-cadherin-defective breast cancers, thus providing the rationale for the assessment of these agents in molecularly stratified phase II clinical trials. Cancer Discov; 8(4); 498-515. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 371.


Subject(s)
Breast Neoplasms/drug therapy , Cadherins/deficiency , Crizotinib/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Anilides/pharmacology , Anilides/therapeutic use , Animals , Antigens, CD/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/metabolism , Cadherins/genetics , Cell Line, Tumor , Crizotinib/therapeutic use , Female , Humans , Mice , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use
17.
Nat Commun ; 9(1): 1081, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29540684

ABSTRACT

The unprecedented efficacy of chimeric antigen receptor (CAR) T-cell immunotherapy of CD19+ B-cell malignancy has established a new therapeutic pillar of hematology-oncology. Nonetheless, formidable challenges remain for the attainment of comparable success in patients with solid tumors. To accelerate progress and rapidly characterize emerging toxicities, systems that permit the repeated and non-invasive assessment of CAR T-cell bio-distribution would be invaluable. An ideal solution would entail the use of a non-immunogenic reporter that mediates specific uptake of an inexpensive, non-toxic and clinically established imaging tracer by CAR T cells. Here we show the utility of the human sodium iodide symporter (hNIS) for the temporal and spatial monitoring of CAR T-cell behavior in a cancer-bearing host. This system provides a clinically compliant toolkit for high-resolution serial imaging of CAR T cells in vivo, addressing a fundamental unmet need for future clinical development in the field.


Subject(s)
Antigens, CD19/metabolism , Receptors, Antigen, T-Cell/metabolism , Animals , Antigens, CD19/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Line , Flow Cytometry , Humans , Immunotherapy , Male , Mice , Mice, SCID , Receptors, Antigen, T-Cell/genetics , Symporters/genetics , Symporters/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
18.
Nat Commun ; 9(1): 1044, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29535384

ABSTRACT

Triple negative breast cancers (TNBCs) lack recurrent targetable driver mutations but demonstrate frequent copy number aberrations (CNAs). Here, we describe an integrative genomic and RNAi-based approach that identifies and validates gene addictions in TNBCs. CNAs and gene expression alterations are integrated and genes scored for pre-specified target features revealing 130 candidate genes. We test functional dependence on each of these genes using RNAi in breast cancer and non-malignant cells, validating malignant cell selective dependence upon 37 of 130 genes. Further analysis reveals a cluster of 13 TNBC addiction genes frequently co-upregulated that includes genes regulating cell cycle checkpoints, DNA damage response, and malignant cell selective mitotic genes. We validate the mechanism of addiction to a potential drug target: the mitotic kinesin family member C1 (KIFC1/HSET), essential for successful bipolar division of centrosome-amplified malignant cells and develop a potential selection biomarker to identify patients with tumors exhibiting centrosome amplification.


Subject(s)
Genomics/methods , Triple Negative Breast Neoplasms/genetics , Cell Cycle Checkpoints/genetics , DNA Copy Number Variations/genetics , DNA Damage/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Gene Silencing/physiology , Humans , Kinesins/genetics , RNA Interference
19.
J Pathol Clin Res ; 4(1): 39-54, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29416876

ABSTRACT

The prognostic importance of lymph node (LN) status and tumour-infiltrating lymphocytes (TILs), is well established, particularly TILs in triple negative breast cancers (TNBCs). So far, few studies have interrogated changes in involved and uninvolved LNs and evaluated if their morphological patterns add valuable information for the prediction of disease progression in breast cancer. In a cohort of 309 patients enriched for TNBCs (170/309), we histologically characterised immune and stromal features in primary tumours and associated involved and uninvolved axillary LNs on routine haematoxylin and eosin stained sections. Of the 309 patients, 143 had LN-positive disease. Twenty-five histopathological features were assessed, including the degree of TIL presence, quantitative and qualitative assessment of germinal centres (GCs) and sinus histiocytosis. Multivariate and cross-validated proportional hazard regression analyses were used to identify optimal covariate sets for prediction of distant metastasis-free survival (DMFS). The degree of intratumoural and peritumoural immune infiltrate was associated with architectural changes in both uninvolved and involved LNs. By including clinicopathological characteristics as well as tumour and LN histopathological features in L2-regularised proportional hazard models, the prediction of 5-year DMFS was improved by 3-15% over the baseline in all cancers and in TNBCs. In LN-positive cancers, the combination of Salgado's classification, lymphocytic lobulitis, size and number of GCs in the uninvolved LNs and location of GCs in the involved LNs carried significant prognostic information. From these features, a multivariate cross-validation-stable risk signature was constructed, which identified low-risk groups within both LN-positive breast cancers and the LN-positive TNBCs group with a 10-year DMFS probability of 78 and 87%, respectively. This study illustrates that, by incorporating histopathological patterns of involved and uninvolved LNs combined with primary tumour immune and stromal features, the prediction of developing distant metastasis in LN-positive breast cancers can be estimated more accurately.

20.
Cancer Cell ; 32(2): 169-184.e7, 2017 08 14.
Article in English | MEDLINE | ID: mdl-28810143

ABSTRACT

Patterns of genomic evolution between primary and metastatic breast cancer have not been studied in large numbers, despite patients with metastatic breast cancer having dismal survival. We sequenced whole genomes or a panel of 365 genes on 299 samples from 170 patients with locally relapsed or metastatic breast cancer. Several lines of analysis indicate that clones seeding metastasis or relapse disseminate late from primary tumors, but continue to acquire mutations, mostly accessing the same mutational processes active in the primary tumor. Most distant metastases acquired driver mutations not seen in the primary tumor, drawing from a wider repertoire of cancer genes than early drivers. These include a number of clinically actionable alterations and mutations inactivating SWI-SNF and JAK2-STAT3 pathways.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Evolution, Molecular , Mutation , Neoplasm Recurrence, Local/genetics , Adult , Aged , Aged, 80 and over , Chromosomal Proteins, Non-Histone/antagonists & inhibitors , Chromosomal Proteins, Non-Histone/genetics , Female , Humans , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/genetics , Male , Middle Aged , Neoplasm Metastasis/genetics , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...