Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
JCI Insight ; 9(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587077

ABSTRACT

To unravel the heterogeneity and molecular signature of effector memory Th2 cells (Tem2), we analyzed 23 individuals' PBMCs of filaria-infected (Filaria+) and 24 healthy volunteers (Filaria-), with or without coincident house dust mite (HDM) allergic sensitization. Flow cytometry revealed 3 CD4+ Tem subsets - CCR4+CCR6+CRTH2- Tem17, CCR4+CCR6-CRTH2+ Tem2, and CCR6+CCR4+CRTH2+ Tem17.2 - markedly enriched in Filaria+ individuals. These subsets were sorted and analyzed by multiomic single-cell RNA immunoprofiling. SingleR-annotated Th2 cells from Tem2 and Tem17.2 cell subsets had features of pathogenic Th2 effector cells based on their transcriptional signatures, with downregulated CD27 and elevated expression levels of ITGA4, IL17RB, HPGDS, KLRB1, PTGDR2, IL9R, IL4, IL5, and IL13 genes. When the Filaria+ individuals were subdivided based on their allergic status, Tem2 cells in HDM+Filaria+ individuals showed an overall reduction in TCR diversity, suggesting the occurrence of antigen-driven clonal expansion. Moreover, HDM+Filaria+ individuals showed not only an expansion in the frequency of both Tem2 and Tem17.2 cell subsets, but also a change in their molecular program by overexpressing GATA3, IL17RB, CLRF2, and KLRB1, as well as increased antigen-induced IL-4, IL-5, and IL-13 production, suggesting that aeroallergens reshape the transcriptional and functional programming of Th2 cell subsets in human filarial infection toward a pathogenic immunophenotype.


Subject(s)
Hypersensitivity , T-Lymphocyte Subsets , Animals , Humans , Th2 Cells , Allergens , Pyroglyphidae
2.
Nat Microbiol ; 9(1): 120-135, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38066332

ABSTRACT

Oxidative stress triggers ferroptosis, a form of cellular necrosis characterized by iron-dependent lipid peroxidation, and has been implicated in Mycobacterium tuberculosis (Mtb) pathogenesis. We investigated whether Bach1, a transcription factor that represses multiple antioxidant genes, regulates host resistance to Mtb. We found that BACH1 expression is associated clinically with active pulmonary tuberculosis. Bach1 deletion in Mtb-infected mice increased glutathione levels and Gpx4 expression that inhibit lipid peroxidation. Bach1-/- macrophages exhibited increased resistance to Mtb-induced cell death, while Mtb-infected Bach1-deficient mice displayed reduced bacterial loads, pulmonary necrosis and lipid peroxidation concurrent with increased survival. Single-cell RNA-seq analysis of lungs from Mtb-infected Bach1-/- mice revealed an enrichment of genes associated with ferroptosis suppression. Bach1 depletion in Mtb-infected B6.Sst1S mice that display human-like necrotic lung pathology also markedly reduced necrosis and increased host resistance. These findings identify Bach1 as a key regulator of cellular and tissue necrosis and host resistance in Mtb infection.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Animals , Mice , Basic-Leucine Zipper Transcription Factors/genetics , Macrophages/microbiology , Mycobacterium tuberculosis/genetics , Necrosis , Tuberculosis/microbiology , Tuberculosis, Pulmonary/genetics
3.
J Allergy Clin Immunol Glob ; 2(4): 100131, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37781651

ABSTRACT

Background: The immunologic mechanisms underlying pulmonary type 2 inflammation, including the dynamics of eosinophil recruitment to the lungs, still need to be elucidated. Objective: We sought to investigate how IL-13-producing TH2 effector cells trigger eosinophil migration in house dust mite (HDM)-driven allergic pulmonary inflammation. Methods: Multiparameter and molecular profiling of murine lungs with HDM-induced allergy was investigated in the absence of IL-13 signaling by using IL-13Rα1-deficient mice and separately through adoptive transfer of CD4+ T cells from IL-5-deficient mice into TCRα-/- mice before allergic inflammation. Results: We demonstrated through single-cell techniques that HDM-driven pulmonary inflammation displays a profile characterized by TH2 effector cell-induced IL-13-dominated eosinophilic inflammation. Using HDM-sensitized IL-13Rα1-/- mice, we found a marked reduction in the influx of eosinophils into the lungs along with a significant downregulation of both CCL-11 and CCL-24. We further found that eosinophil trafficking to the lung relies on production of IL-13-driven CCL-11 and CCL-24 by fibroblasts and Ly6C+ (so-called classical) monocytes. Moreover, this IL-13-mediated eotaxin-dependent eosinophil influx to the lung tissue required IL-5-induced eosinophilia. Finally, we demonstrated that this IL-13-driven eosinophil-dominated pulmonary inflammation was critical for limiting bystander lung transiting Ascaris parasites in a model of allergy and helminth interaction. Conclusion: Our data suggest that IL-5-dependent allergen-specific TH2 effector cell response and subsequent signaling through the IL-13/IL-13Rα1 axis in fibroblasts and myeloid cells regulate the eotaxin-dependent recruitment of eosinophils to the lungs, with multiple downstream consequences, including bystander control of lung transiting parasitic helminths.

4.
Front Immunol ; 13: 883159, 2022.
Article in English | MEDLINE | ID: mdl-35844575

ABSTRACT

We generated CD4+ T cell lines (TCLs) reactive to either SARS-CoV-2 spike (S) or membrane (M) proteins from unexposed naïve T cells from six healthy donor volunteers to understand in fine detail whether the S and M structural proteins have intrinsic differences in driving antigen-specific CD4+ T cell responses. Having shown that each of the TCLs were antigen-specific and antigen-reactive, single cell mRNA analyses demonstrated that SARS-CoV-2 S and M proteins drive strikingly distinct molecular signatures. Whereas the S-specific CD4+ T cell transcriptional signature showed a marked upregulation of CCL1, CD44, IL17RB, TNFRSF18 (GITR) and IGLC3 genes, in general their overall transcriptome signature was more similar to CD4+ T cell responses induced by other viral antigens (e.g. CMV). However, the M protein-specific CD4+ TCLs have a transcriptomic signature that indicate a marked suppression of interferon signaling, characterized by a downregulation of the genes encoding ISG15, IFITM1, IFI6, MX1, STAT1, OAS1, IFI35, IFIT3 and IRF7 (a molecular signature which is not dissimilar to that found in severe COVID-19). Our study suggests a potential link between the antigen specificity of the SARS-CoV-2-reactive CD4+ T cells and the development of specific sets of adaptive immune responses. Moreover, the balance between T cells of significantly different specificities may be the key to understand how CD4+ T cell dysregulation can determine the clinical outcomes of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , CD4-Positive T-Lymphocytes , COVID-19/genetics , Cell Line , Epitopes, T-Lymphocyte , Humans , Interferons , Spike Glycoprotein, Coronavirus
5.
Exp Parasitol ; 238: 108267, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35550886

ABSTRACT

BACKGROUND: Human ascariasis is one of the most prevalent neglected tropical diseases worldwide. The immune response during human ascariasis is characterized by Th2 polarization and a mixed Th2/Th17 response during the pathogenesis of experimental larval ascariasis. Cytokines and other pro-inflammatory mediators, such as nitric oxide (NO), are involved in helminthic infections. However, the role of NO in ascariasis remains unclear. OBJECTIVES: Given the importance of NO in inflammation, we aimed to determine the immunological and histopathological alterations in the livers of C57BL/6 iNOS-/- mice during A. suum infection. METHODS: In this study, parasitic load was evaluated in the livers of wild type C57BL/6 and C57BL/6 iNOS-/- mice infected with A. suum. Histopathological and morphometric analyses and analysis of serum cytokines via Cytometric Bead Array were performed, and the activity of eosinophil peroxidase and myeloperoxidase of neutrophils in the tissues were determined. RESULTS: The results showed that NO is important for controlling parasitic load during infection by A. suum. C57BL/6iNOS-/- mice showed reduced inflammatory processes and less tissue damage during liver larval migration of A. suum, which is associated with a reduction in serum levels of pro-inflammatory cytokines. CONCLUSIONS: We demonstrated that NO is a crucial inflammatory molecule during Ascaris sp. infection and controls the establishment of the parasite and the development of the host immune response in the liver.


Subject(s)
Ascariasis , Ascaris suum , Parasites , Animals , Ascariasis/parasitology , Cytokines , Inflammation , Liver/parasitology , Mice , Mice, Inbred C57BL , Nitric Oxide
6.
Insect Biochem Mol Biol ; 143: 103739, 2022 04.
Article in English | MEDLINE | ID: mdl-35149206

ABSTRACT

Triatoma infestans is one of the most important vectors of Trypanosoma cruzi in the Americas. While feeding, they release large amounts of saliva that will counteract the host's responses triggered at the bite site. Despite the various activities described on T. infestans saliva, little is known about its effect on the modulation of the host's immune system. This work aimed to describe the effects of T. infestans saliva on cells of the mouse immune system and access the role in hematophagy. The effect of saliva or salivary gland extract (SGE) was evaluated in vivo and in vitro by direct T. infestans feeding on mice or using different biological assays. Mice that were submitted to four bites by three specimens of T. infestans had their anti-saliva IgG serum levels approximately 2.4 times higher than controls, but no change in serum IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ, and TNF-α levels was observed. No macroscopic alterations were seen at the bite site, but an accumulation of mononuclear and polymorphonuclear cells shortly after the bite and 24 h later were observed in histological cuts. At low concentrations (up to ∼5 µg/well), SGE induced TNF-α production by macrophages and spleen cells, IFN-γ and IL-10 by spleen cells and NO by macrophages. However, at higher concentrations (10 and 20 µg/well), viability of macrophages and spleen cells was reduced by SGE, reducing the production of NO and cytokines (except TNF-α). The salivary trialysin was the main inducer of cell death as macrophage viability and NO production was restored in assays carried out with SGE from trialysin knockdown insects. The reduction of the salivary trialysin by RNAi affected the total ingestion rate, the weight gain, and retarded the molt from second to the fifth instar of T. infestans nymphs fed on mice. The results show that T. infestans saliva modulates the activity of cells of the host immune system and trialysin is an important salivary molecule that reduces host cells viability and impacts the feeding performance of T. infestans feeding on live hosts.


Subject(s)
Triatoma , Trypanosoma cruzi , Animals , Immune System , Mice , Saliva , Salivary Proteins and Peptides/pharmacology
7.
mBio ; 12(6): e0289021, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34933444

ABSTRACT

High-throughput 16S rRNA sequencing has allowed the characterization of helminth-uninfected (HU) and helminth-infected (HI) gut microbiomes, revealing distinct profiles. However, there have been no qualitative or quantitative syntheses of these studies, which show marked variation in participant age, diet, pathogen of interest, and study location. A predefined minimally biased search strategy identified 23 studies in humans. For each of these studies, we qualitatively addressed the effects of helminth infection on within-individual (alpha) and between-individual (beta) fecal microbiome diversity, infection-associated microbial taxa, the effect of helminth clearance on microbiome composition, microbiome composition as a predictor of infection status or treatment outcome, and treatment-specific effects on the fecal microbiome. Concomitantly, we performed a meta-analysis on a subset of 7 of these studies containing raw, paired-end 16S reads and individual-level metadata, comprising 424 pretreatment or untreated HI individuals and 497 HU controls. After reducing the batch effect and adjusting for age, our data demonstrated that intestinal helminth parasites can alter the host gut microbiome by increasing alpha diversity and promoting taxonomic reassortment and gradient collapse. Most strongly influencing the microbiome composition were the helminths found in the large intestine, Enterobius vermicularis and Trichuris trichiura, suggesting that this influence appears to be specific to soil-transmitted helminths (STH) species and host anatomical niche. In summary, using a large and diverse sample set captured in the meta-analysis, we were able to evaluate the influence of individual helminth species as well as species-species interactions, each of which explained a significant portion of the variation in the microbiome. IMPORTANCE The gut microbiome has established importance in regulating many aspects of human health, including nutrition and immunity. While many internal and environmental factors are known to influence the microbiome, less is known about the effects of intestinal helminth parasites (worms), which together affect one-sixth of the world's population. Through a comprehensive qualitative systematic review and quantitative meta-analysis of existing literature, we provide strong evidence that helminth infection dynamically shifts the intestinal microbiome structure. Moreover, we demonstrated that such influence seems to be specific to helminth species and host anatomical niche. Our findings suggest that the gut microbiome may underlie some of the pathology associated with intestinal worm infection and support future work to understand the precise nature of the helminth-microbiome relationship.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Dysbiosis/microbiology , Gastrointestinal Microbiome , Helminthiasis/microbiology , Helminths/physiology , Adolescent , Adult , Aged , Animals , Bacteria/genetics , Child , Child, Preschool , Dysbiosis/parasitology , Feces/parasitology , Female , Helminthiasis/parasitology , Helminths/classification , Helminths/genetics , Humans , Infant , Male , Middle Aged , Phylogeny , Young Adult
8.
PLoS Pathog ; 17(11): e1010067, 2021 11.
Article in English | MEDLINE | ID: mdl-34784389

ABSTRACT

Human ascariasis is the most prevalent but neglected tropical disease in the world, affecting approximately 450 million people. The initial phase of Ascaris infection is marked by larval migration from the host's organs, causing mechanical injuries followed by an intense local inflammatory response, which is characterized mainly by neutrophil and eosinophil infiltration, especially in the lungs. During the pulmonary phase, the lesions induced by larval migration and excessive immune responses contribute to tissue remodeling marked by fibrosis and lung dysfunction. In this study, we investigated the relationship between SIgA levels and eosinophils. We found that TLR2 and TLR4 signaling induces eosinophils and promotes SIgA production during Ascaris suum infection. Therefore, control of parasite burden during the pulmonary phase of ascariasis involves eosinophil influx and subsequent promotion of SIgA levels. In addition, we also demonstrate that eosinophils also participate in the process of tissue remodeling after lung injury caused by larval migration, contributing to pulmonary fibrosis and dysfunction in re-infected mice. In conclusion, we postulate that eosinophils play a central role in mediating host innate and humoral immune responses by controlling parasite burden, tissue inflammation, and remodeling during Ascaris suum infection. Furthermore, we suggest that the use of probiotics can induce eosinophilia and SIgA production and contribute to controlling parasite burden and morbidity of helminthic diseases with pulmonary cycles.


Subject(s)
Ascariasis/immunology , Ascaris suum/immunology , Eosinophils/physiology , Immunoglobulin A, Secretory/metabolism , Pneumonia/prevention & control , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Animals , Ascariasis/metabolism , Ascariasis/parasitology , Female , Immunoglobulin A, Secretory/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pneumonia/immunology , Pneumonia/parasitology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics
9.
Microbes Infect ; 23(8): 104836, 2021.
Article in English | MEDLINE | ID: mdl-34020024

ABSTRACT

Ascaris lumbricoides and Ascaris suum are two closely related parasites that infect humans and pigs. The zoonotic potential of A. suum has been a matter of debate for decades. Here we sought to investigate the potential human infection by A. suum and its immunological alterations. We orally infected five healthy human subjects with eggs embraced by A. suum. The infection was monitored for symptoms and possible respiratory changes, by an interdisciplinary health team. Parasitological, hematological analyses, serum immunoglobulin, cytokine profiles, and gene expression were evaluated during the infection. Our results show that A. suum is able to infect and complete the cycle in humans causing A. lumbricoides similar symptoms, including, cough, headache, diarrhea, respiratory discomfort and chest x-ray alterations coinciding with larvae migration in the lungs. We also observed activation of the immune system with production of IgM and IgG and a Th2/Th17 response with downregulation of genes related to Th1 and apoptosis. PCA (Principal componts analysis) show that infection with A. suum leads to a change in the immune landscape of the human host. Our data reinforce the zoonotic capacity of A. suum and bring a new perspective on the understanding of the immune response against this parasite.


Subject(s)
Ascariasis , Ascaris suum , Swine Diseases , Animals , Ascariasis/parasitology , Ascaris suum/physiology , Humans , Larva/physiology , Swine
10.
Parasitology ; : 1-10, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33843506

ABSTRACT

Human ascariasis is the most common and prevalent neglected tropical disease and is estimated that ~819 million people are infected around the globe, accounting for 0.861 million years of disability-adjusted life years in 2017. Even with the existence of highly effective drugs, the constant presence of infective parasite eggs in the environment contribute to a high reinfection rate after treatment. Due to its high prevalence and broad geographic distribution Ascaris infection is associated with a variety of co-morbidities and co-infections. Here, we provide data from both experimental models and humans studies that illustrate how complex is the interaction of Ascaris with the host immune system, especially, in the context of reinfections, co-infections and associated co-morbidities.

11.
PLoS Pathog ; 17(3): e1009337, 2021 03.
Article in English | MEDLINE | ID: mdl-33651853

ABSTRACT

The establishment of type 2 responses driven by allergic sensitization prior to exposure to helminth parasites has demonstrated how tissue-specific responses can protect against migrating larval stages, but, as a consequence, allow for immune-mediated, parasite/allergy-associated morbidity. In this way, whether helminth cross-reacting allergen-specific antibodies are produced and play a role during the helminth infection, or exacerbate the allergic outcome awaits elucidation. Thus, the main objective of the study was to investigate whether house dust mite (HDM) sensitization triggers allergen-specific antibodies that interact with Ascaris antigens and mediate antibody-dependent deleterious effects on these parasites as well as, to assess the capacity of cross-reactive helminth proteins to trigger allergic inflammation in house dust mite presensitized mice. Here, we show that the sensitization with HDM-extract drives marked IgE and IgG1 antibody responses that cross-react with Ascaris larval antigens. Proteomic analysis of Ascaris larval antigens recognized by these HDM-specific antibodies identified Ascaris tropomyosin and enolase as the 2 major HDM homologues based on high sequence and structural similarity. Moreover, the helminth tropomyosin could drive Type-2 associated pulmonary inflammation similar to HDM following HDM tropomyosin sensitization. The HDM-triggered IgE cross-reactive antibodies were found to be functional as they mediated immediate hypersensitivity responses in skin testing. Finally, we demonstrated that HDM sensitization in either B cells or FcγRIII alpha-chain deficient mice indicated that the allergen driven cell-mediated larval killing is not antibody-dependent. Taken together, our data suggest that aeroallergen sensitization drives helminth reactive antibodies through molecular and structural similarity between HDM and Ascaris antigens suggesting that cross-reactive immune responses help drive allergic inflammation.


Subject(s)
Dust/immunology , Hypersensitivity/immunology , Pyroglyphidae/immunology , Animals , Antigens, Dermatophagoides/immunology , Helminth Proteins/immunology , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Mice , Proteomics
12.
Parasitology ; 148(14): 1795-1805, 2021 12.
Article in English | MEDLINE | ID: mdl-35586777

ABSTRACT

Ascariasis is the most prevalent helminth infection in the world and leads to significant, life-long morbidity, particularly in young children. Current efforts to control and eradicate ascariasis in endemic regions have been met with significant challenges including high-rates of re-infection and potential development of anthelminthic drug resistance. Vaccines against ascariasis are a key tool that could break the transmission cycle and lead to disease eradication globally. Evolution of the Ascaris vaccine pipeline has progressed, however no vaccine product has been brought to human clinical trials to date. Advancement in recombinant protein technology may provide the first step in generating an Ascaris vaccine as well as a pan-helminthic vaccine ready for human trials. However, several roadblocks remain and investment in new technologies will be important to develop a successful human Ascaris vaccine that is critically needed to prevent significant morbidity in Ascaris-endemic regions around the world.


Subject(s)
Ascariasis , Vaccine Development , Vaccines , Animals , Ascariasis/prevention & control , Ascaris , Humans
13.
Front Immunol ; 11: 594520, 2020.
Article in English | MEDLINE | ID: mdl-33193446

ABSTRACT

Helminths, including nematodes, cestodes and trematodes, are complex parasitic organisms that infect at least one billion people globally living in extreme poverty. Helminthic infections are associated with severe morbidity particularly in young children who often harbor the highest burden of disease. While each helminth species completes a distinct life cycle within the host, several helminths incite significant lung disease. This impact on the lungs occurs either directly from larval migration and host immune activation or indirectly from a systemic inflammatory immune response. The impact of helminths on the pulmonary immune response involves a sophisticated orchestration and activation of the host innate and adaptive immune cells. The consequences of activating pulmonary host immune responses are variable with several helminthic infections leading to severe, pulmonary compromise while others providing immune tolerance and protection against the development of pulmonary diseases. Further delineation of the convoluted interface between helminth infection and the pulmonary host immune responses is critical to the development of novel therapeutics that are critically needed to prevent the significant global morbidity caused by these parasites.


Subject(s)
Helminthiasis/immunology , Helminthiasis/parasitology , Helminths/immunology , Host-Parasite Interactions/immunology , Lung Diseases, Parasitic/immunology , Lung Diseases, Parasitic/parasitology , Adaptive Immunity , Animals , Biomarkers , Disease Susceptibility , Helminthiasis/metabolism , Helminths/growth & development , Humans , Immunity , Immunity, Innate , Immunomodulation , Life Cycle Stages , Lung Diseases, Parasitic/metabolism , Organ Specificity/immunology
14.
Am J Trop Med Hyg ; 103(1_Suppl): 105-113, 2020 07.
Article in English | MEDLINE | ID: mdl-32400352

ABSTRACT

The Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) was created to conduct research that could inform programmatic decision-making related to schistosomiasis. SCORE included several large cluster randomized field studies involving mass drug administration (MDA) with praziquantel. The largest of these were studies of gaining or sustaining control of schistosomiasis, which were conducted in five African countries. To enhance relevance for routine practice, the MDA in these studies was coordinated by or closely aligned with national neglected tropical disease (NTD) control programs. The study protocol set minimum targets of at least 90% for coverage among children enrolled in schools and 75% for all school-age children. Over the 4 years of intervention, an estimated 3.5 million treatments were administered to study communities. By year 4, the median village coverage was at or above targets in all studies except that in Mozambique. However, there was often a wide variation behind these summary statistics, and all studies had several villages with very low or high coverage. In studies where coverage was estimated by comparing the number of people treated with the number eligible for treatment, denominator estimation was often problematic. The SCORE experiences in conducting these studies provide lessons for future efforts that attempt to implement strong research designs in real-world contexts. They also have potential applicability to country MDA campaigns against schistosomiasis and other NTDs, most of which are conducted with less logistical and financial support than was available for the SCORE study efforts.


Subject(s)
Anthelmintics/therapeutic use , Mass Drug Administration , Schistosomiasis/drug therapy , Africa , Animals , Child , Child, Preschool , Female , Humans , Male , Mozambique , Neglected Diseases/drug therapy , Neglected Diseases/prevention & control , Praziquantel/therapeutic use , Prevalence , Public Health , Rural Population , Schistosoma , Schistosomiasis/prevention & control , Schools
15.
Am J Trop Med Hyg ; 103(1_Suppl): 14-23, 2020 07.
Article in English | MEDLINE | ID: mdl-32400356

ABSTRACT

This report summarizes the design and outcomes of randomized controlled operational research trials performed by the Bill & Melinda Gates Foundation-funded Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) from 2009 to 2019. Their goal was to define the effectiveness and test the limitations of current WHO-recommended schistosomiasis control protocols by performing large-scale pragmatic trials to compare the impact of different schedules and coverage regimens of praziquantel mass drug administration (MDA). Although there were limitations to study designs and performance, analysis of their primary outcomes confirmed that all tested regimens of praziquantel MDA significantly reduced local Schistosoma infection prevalence and intensity among school-age children. Secondary analysis suggested that outcomes in locations receiving four annual rounds of MDA were better than those in communities that had treatment holiday years, in which no praziquantel MDA was given. Statistical significance of differences was obscured by a wider-than-expected variation in community-level responses to MDA, defining a persistent hot spot obstacle to MDA success. No MDA schedule led to elimination of infection, even in those communities that started at low prevalence of infection, and it is likely that programs aiming for elimination of transmission will need to add supplemental interventions (e.g., snail control, improvement in water, sanitation and hygiene, and behavior change interventions) to achieve that next stage of control. Recommendations for future implementation research, including exploration of the value of earlier program impact assessment combined with intensification of intervention in hot spot locations, are discussed.


Subject(s)
Mass Drug Administration , Schistosomiasis haematobia , Schistosomiasis mansoni , Africa/epidemiology , Animals , Anthelmintics/therapeutic use , Child , Drug Administration Schedule , Female , Humans , Male , Praziquantel/therapeutic use , Prevalence , Schistosoma haematobium/drug effects , Schistosoma mansoni/drug effects , Schistosomiasis haematobia/drug therapy , Schistosomiasis haematobia/epidemiology , Schistosomiasis haematobia/prevention & control , Schistosomiasis haematobia/transmission , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/epidemiology , Schistosomiasis mansoni/prevention & control , Schistosomiasis mansoni/transmission , Snails/parasitology , Water/parasitology
16.
PLoS Negl Trop Dis ; 14(5): e0008237, 2020 05.
Article in English | MEDLINE | ID: mdl-32453752

ABSTRACT

The human hookworm Necator americanus infects more than 400 million people worldwide, contributing substantially to the poverty in these regions. Adult stage N. americanus live in the small intestine of the human host where they inject excretory/secretory (ES) products into the mucosa. ES products have been characterized at the proteome level for a number of animal hookworm species, but until now, the difficulty in obtaining sufficient live N. americanus has been an obstacle in characterizing the secretome of this important human pathogen. Herein we describe the ES proteome of N. americanus and utilize this information along with RNA Seq data to conduct the first proteogenomic analysis of a parasitic helminth, significantly improving the available genome and thereby generating a robust description of the parasite secretome. The genome annotation resulted in a revised prediction of 3,425 fewer genes than initially reported, accompanied by a significant increase in the number of exons and introns, total gene length and the percentage of the genome covered by genes. Almost 200 ES proteins were identified by LC-MS/MS with SCP/TAPS proteins, 'hypothetical' proteins and proteases among the most abundant families. These proteins were compared to commonly used model species of human parasitic infections, including Ancylostoma caninum, Nippostrongylus brasiliensis and Heligmosomoides polygyrus. SCP/TAPS proteins are immunogenic in nematode infections, so we expressed four of those identified in this study in recombinant form and showed that they are all recognized to varying degrees by serum antibodies from hookworm-infected subjects from a disease-endemic area of Brazil. Our findings provide valuable information on important families of proteins with both known and unknown functions that could be instrumental in host-parasite interactions, including protein families that might be key for parasite survival in the onslaught of robust immune responses, as well as vaccine and diagnostic targets.


Subject(s)
Necator americanus/metabolism , Proteome , Animals , Gene Expression Regulation , Gene Regulatory Networks , Genome, Helminth , Helminth Proteins , Necator americanus/genetics , Phylogeny
17.
Sci Immunol ; 5(46)2020 04 10.
Article in English | MEDLINE | ID: mdl-32276966

ABSTRACT

Tissue-resident macrophages (TRMs) maintain tissue homeostasis, but they can also provide a replicative niche for intracellular pathogens such as Leishmania How dermal TRMs proliferate and maintain their M2 properties even in the strong TH1 environment of the L. major infected dermis is not clear. Here, we show that, in infected mice lacking IL-4/13 from eosinophils, dermal TRMs shifted to a proinflammatory state, their numbers declined, and disease was attenuated. Intravital microscopy revealed a rapid infiltration of eosinophils followed by their tight interaction with dermal TRMs. IL-4-stimulated dermal TRMs, in concert with IL-10, produced a large amount of CCL24, which functioned to amplify eosinophil influx and their interaction with dermal TRMs. An intraperitoneal helminth infection model also demonstrated a requirement for eosinophil-derived IL-4 to maintain tissue macrophages through a CCL24-mediated amplification loop. CCL24 secretion was confined to resident macrophages in other tissues, implicating eosinophil-TRM cooperative interactions in diverse inflammatory settings.


Subject(s)
Chemokine CCL24/immunology , Eosinophils/immunology , Interleukin-4/immunology , Leishmaniasis, Cutaneous/immunology , Macrophages/immunology , Skin/immunology , Animals , Interleukin-4/deficiency , Macrophages/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Skin/cytology
18.
Acta Trop ; 202: 105279, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31758913

ABSTRACT

Intestinal parasites cause a significant public health problem worldwide due to the associated morbidities, mainly in infected school-aged children (SAC). The strategy of large-scale deworming in SAC to control the transmission of soil-transmitted helminths (STH) has been advocated by the World Health Organization and was recently adopted in Brazil; however, the long-term effects of mass deworming on the larger parasitological profile have been less studied. After a five-year period of school-based large-scale treatment for STH using an annual single dose of albendazole in a community of Sergipe state, Brazil, a marked reduction in prevalence was observed (15.4%% vs.7.4% for Ascaris sp., 6.0%%  vs. 0.4% for hookworm, and 12.8%%  vs. 4.5%% for Trichuris trichiura), with the exception of Strongyloides stercoralis, which had no statistically significant change in prevalence. There was, however, an increase in the prevalence of intestinal protozoans, specifically Entamoeba histolytica/E. dispar (0.0%% vs. 36.0%), Blastocystis hominis (0.0%%  vs. 40.1%), and Giardia duodenalis (5.6%% vs. 14.5%). Although the findings showed a dramatic reduction in the prevalence of STH after four rounds of preventive chemotherapy, there was an increase in intestinal protozoan infections, indicating a change in the epidemiological profile.


Subject(s)
Helminthiasis/epidemiology , Intestinal Diseases, Parasitic/epidemiology , Protozoan Infections/epidemiology , Soil/parasitology , Albendazole/therapeutic use , Animals , Brazil/epidemiology , Chemoprevention , Child , Female , Helminthiasis/drug therapy , Humans , Male , Prevalence
19.
J Clin Invest ; 129(9): 3686-3701, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31380805

ABSTRACT

This study investigates the relationship between helminth infection and allergic sensitization by assessing the influence of preexisting allergy on the outcome of helminth infections, rather than the more traditional approach in which the helminth infection precedes the onset of allergy. Here we used a murine model of house dust mite-induced (HDM-induced) allergic inflammation followed by Ascaris infection to demonstrate that allergic sensitization drives an eosinophil-rich pulmonary type 2 immune response (Th2 cells, M2 macrophages, type 2 innate lymphoid cells, IL-33, IL-4, IL-13, and mucus) that directly hinders larval development and reduces markedly the parasite burden in the lungs. This effect is dependent on the presence of eosinophils, as eosinophil-deficient mice were unable to limit parasite development or numbers. In vivo administration of neutralizing antibodies against CD4 prior to HDM sensitization significantly reduced eosinophils in the lungs, resulting in the reversal of the HDM-induced Ascaris larval killing. Our data suggest that HDM allergic sensitization drives a response that mimics a primary Ascaris infection, such that CD4+ Th2-mediated eosinophil-dependent helminth larval killing in the lung tissue occurs. This study provides insight into the mechanisms underlying tissue-specific responses that drive a protective response against the early stages of the helminths prior to their establishing long-lasting infections in the host.


Subject(s)
Antigen Presentation , Ascariasis/immunology , Eosinophils/immunology , Hypersensitivity/immunology , Lung/immunology , Lung/parasitology , Allergens/immunology , Animals , Antigens, Dermatophagoides/immunology , Ascaris , Asthma/immunology , CD4-Positive T-Lymphocytes/immunology , Eosinophils/parasitology , Female , Immunity, Innate , Inflammation , Macrophages/immunology , Male , Mice , Mice, Inbred BALB C , Pyroglyphidae , Swine , Th2 Cells/immunology
20.
Am J Trop Med Hyg ; 101(3): 617-627, 2019 09.
Article in English | MEDLINE | ID: mdl-31287046

ABSTRACT

Control of schistosomiasis presently relies largely on preventive chemotherapy with praziquantel through mass drug administration (MDA) programs. The Schistosomiasis Consortium for Operational Research and Evaluation has concluded five studies in four countries (Côte d'Ivoire, Kenya, Mozambique, and Tanzania) to evaluate alternative approaches to MDA. Studies involved four intervention years, with final evaluation in the fifth year. Mass drug administration given annually or twice over 4 years reduced average prevalence and intensity of schistosome infections, but not all villages that were treated in the same way responded similarly. There are multiple ways by which responsiveness to MDA, or the lack thereof, could be measured. In the analyses presented here, we defined persistent hotspots (PHS) as villages that achieved less than 35% reduction in prevalence and/or less than 50% reduction in infection intensity after 4 years of either school-based or community-wide MDA, either annually or twice in 4 years. By this definition, at least 30% of villages in each of the five studies were PHSs. We found no consistent relationship between PHSs and the type or frequency of intervention, adequacy of reported MDA coverage, and prevalence or intensity of infection at baseline. New research is warranted to identify PHSs after just one or a few rounds of MDA, and new adaptive strategies need to be advanced and validated for turning PHSs into responder villages.


Subject(s)
Anthelmintics/administration & dosage , Mass Drug Administration/statistics & numerical data , Praziquantel/administration & dosage , Schistosomiasis/epidemiology , Schistosomiasis/prevention & control , Africa/epidemiology , Animals , Chemoprevention , Child , Cross-Sectional Studies , Humans , Prevalence , Schistosoma haematobium/drug effects , Schistosomiasis/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...