Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Exp Eye Res ; 246: 110022, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39117134

ABSTRACT

The corneal epithelium is located on the most anterior surface of the eyeball and protects against external stimuli. The development of the corneal epithelium and the maintenance of corneal homeostasis are essential for the maintenance of visual acuity. It has been discovered recently via the in-depth investigation of ocular surface illnesses that the Wnt/ß-catenin signaling pathway is necessary for the growth and stratification of corneal epithelial cells as well as the control of endothelial cell stability. In addition, the Wnt/ß-catenin signaling pathway is directly linked to the development of common corneal illnesses such as keratoconus, fungal keratitis, and corneal neovascularization. This review mainly summarizes the role of the Wnt/ß-catenin signaling pathway in the development, homeostasis, and pathobiology of cornea, hoping to provide new insights into the study of corneal epithelium and the treatment of related diseases.


Subject(s)
Epithelium, Corneal , Homeostasis , Wnt Signaling Pathway , Epithelium, Corneal/metabolism , Humans , Homeostasis/physiology , Wnt Signaling Pathway/physiology , Animals , beta Catenin/metabolism , Corneal Diseases/metabolism , Corneal Diseases/pathology
2.
Invest Ophthalmol Vis Sci ; 65(8): 25, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39017635

ABSTRACT

Purpose: Abnormalities in aquaporins are implicated in the pathological progression of dry eye syndrome. Retinoic acid (RA) regulates cellular proliferation, differentiation, and apoptosis in the cornea, thereby being associated with dry eye disease (DED). The objective of this study is to explore the underlying mechanisms responsible for RA metabolic abnormalities in corneas lacking aquaporin 5 (AQP5). Methods: Dry eye (DE) models were induced via subcutaneous scopolamine hydrobromide. Aqp5 knockout (Aqp5-/-) mice and DE mice were utilized to assess corneal epithelial alterations. Tear secretion, goblet cell counts, and corneal punctate defects were evaluated. The impact of Aqp5 on RA-related enzymes and receptors was investigated using pharmacological RA or SR (A JunB inhibitor), a transcription factor JunB inhibitor, treatment in mouse corneal epithelial cells (CECs), or human corneal epithelial cells (HCECs). The HCECs and NaCl-treated HCECs underwent quantitative real-time PCR (qRT-PCR), immunofluorescent, Western blot, and TUNEL assays. The regulation of transcription factor JunB on Aldh1a1 was explored via ChIP-PCR. Results: Aqp5 and Aldh1a1 were reduced in both CECs of DE mice and NaCl-induced HCECs. Aqp5-/- mice exhibited DE phenotype and reduced Aldh1a1. RA treatment reduced apoptosis, promoted proliferation, and improved the DE phenotype in Aqp5-/- mice. JunB enrichment in the Aldh1a1 promoter was identified by ChIP-PCR. SR significantly increased Aldh1a1 expression, Ki67, and ΔNp63-positive cells, and decreased TUNEL-positive cells in CECs and HCECs. Conclusions: Our findings demonstrated the downregulation of Aqp5 expression and aberrant RA metabolism in DE conditions. Knockout of Aqp5 resulted in reduced production of RA through activation of JunB, subsequently leading to the manifestation of DE symptoms.


Subject(s)
Apoptosis , Aquaporin 5 , Disease Models, Animal , Dry Eye Syndromes , Mice, Knockout , Tretinoin , Animals , Aquaporin 5/genetics , Aquaporin 5/biosynthesis , Aquaporin 5/metabolism , Dry Eye Syndromes/metabolism , Dry Eye Syndromes/pathology , Dry Eye Syndromes/genetics , Mice , Tretinoin/pharmacology , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Real-Time Polymerase Chain Reaction , Mice, Inbred C57BL , Blotting, Western , Humans , Cells, Cultured , Tears/metabolism , In Situ Nick-End Labeling , Gene Expression Regulation , Cell Proliferation
3.
Front Bioeng Biotechnol ; 11: 1267174, 2023.
Article in English | MEDLINE | ID: mdl-37771576

ABSTRACT

Among CRISPR-Cas systems, type V CRISPR-Cas12c is of significant interest because Cas12c recognizes a very simple PAM (TN) and has the ability to silence gene expression without cleaving the DNA. We studied how new transcription factors for the yeast Saccharomyces cerevisiae can be built on Cas12c. We found that, upon fusion to a strong activation domain, Cas12c is an efficient activator. Its functionality was proved as a component of hybrid Boolean gates, i.e., logic circuits that mix transcriptional and translational control (the latter reached via tetracycline-responsive riboswitches). Moreover, Cas12c activity can be strongly inhibited by the anti-CRISPR AcrVA1 protein. Thus, Cas12c has the potential to be a new tool to control the activation of gene expression within yeast synthetic gene circuits.

4.
Biochem Biophys Res Commun ; 680: 184-193, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37742347

ABSTRACT

Cataract is lens opacity, which is a common blinding eye disease worldwide. Aquaporin 5 (AQP5) is expressed in the human and mouse lenses. This study aimed to investigate the underlying mechanisms of AQP5 in the senescence of lens epithelial cells (LECs). Primary LECs were isolated and cultured from Aqp5+/+ and Aqp5-/- mice. Western blot or immunofluorescence staining of p16, Ki67, MitoSOX, JC-1 and phalloidin was used in the experiments to evaluate the changes in the primary LECs. The primary Aqp5-/- LECs showed increased p16 expression and mitochondrial reactive oxygen species, decreased mitochondrial membrane potential and activity, and cytoskeletal disorders. When the cells were pretreated with Mito-TEMPO, the Aqp5-/- mice showed decreased p16 expression, reduced mitochondrial dysfunction and cytoskeletal disorders. Our results revealed that AQP5 deficiency promotes the senescence of primary LECs through mitochondrial dysfunction. This provides a new perspective for the treatment of cataracts by regulating AQP5 expression.

5.
Invest Ophthalmol Vis Sci ; 64(12): 27, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37707834

ABSTRACT

Purpose: Dry eye disease (DED) is multifactorial and associated with nerve abnormalities. We explored an Aquaporin 5 (AQP5)-deficiency-induced JunB activation mechanism, which causes abnormal lacrimal gland (LG) nerve distribution through Slit2 upregulation and Netrin-1 repression. Methods: Aqp5 knockout (Aqp5-/-) and wild-type (Aqp5+/+) mice were studied. LGs were permeabilized and stained with neuronal class III ß-tubulin, tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), and calcitonin gene-related peptide (CGRP). Whole-mount images were acquired through tissue clearing and 3D fluorescence imaging. Mouse primary trigeminal ganglion (TG) neurons were treated with LG extracts and Netrin-1/Slit2 neutralizing antibody. Transcription factor (TF) prediction and chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR) experiments verified the JunB binding and regulatory effect on Netrin-1 and Slit2. Results: Three-dimensional tissue and section immunofluorescence showed reduced LG nerves in Aqp5-/- mice, with sympathetic and sensory nerves significantly decreased. Netrin-1 was reduced and Slit2 increased in Aqp5-/- mice LGs. Aqp5+/+ mice LG tissue extracts (TEs) promoted Aqp5-/- TG neurons axon growth, but Netrin-1 neutralizing antibody (NAb) could inhibit that promotion. Aqp5-/- mice LG TEs inhibited Aqp5+/+ TG axon growth, but Slit2 NAb alleviated that inhibition. Furthermore, JunB, a Netrin-1 and Slit2 TF, could bind them and regulate their expression. SR11302, meanwhile, reversed the Netrin-1 and Slit2 shifts caused by AQP5 deficiency. Conclusions: AQP5 deficiency causes LG nerve abnormalities. Persistent JunB activation, the common denominator for Netrin-1 suppression and Slit2 induction, was found in Aqp5-/- mice LG epithelial cells. This affected sensory and sympathetic nerve fibers' distribution in LGs. Our findings provide insights into preventing, reversing, and treating DED.


Subject(s)
Axon Guidance , Lacrimal Apparatus , Netrin-1 , Animals , Mice , Antibodies, Neutralizing , Aquaporin 5/genetics , Mice, Knockout , Netrin-1/genetics
6.
Front Bioeng Biotechnol ; 10: 922949, 2022.
Article in English | MEDLINE | ID: mdl-35721864

ABSTRACT

CRISPR-Cas systems provide powerful biological tools for genetic manipulation and gene expression regulation. Class 2 systems, comprising type II, type V, and type VI, have the significant advantage to require a single effector Cas protein (Cas9, Cas12, and Cas13 respectively) to cleave nucleic acids upon binding the crRNA. Both Cas9 and Cas12 recognize DNA and induce a double-strand break in it. In contrast, Cas13 bind and cleave RNA exclusively. However, some Cas9 homologs have shown RNase activity as well. Here, we harnessed Nme1Cas9, LwaCas13a, and RfxCas13d to carry out gene downregulation in Saccharomyces cerevisiae by triggering mRNA degradation. To avoid potential DNA damage, we mutated Nme1Cas9 into d16ANme1Cas9 that lost the nuclease activity of the RuvC domain but retained the active HNH domain, able to act on the target DNA strand and, therefore, on the corresponding transcript. Our results showed that d16ANme1Cas9 is a functional RNase in vivo, although with moderate activity since it provoked a fluorescence reduction from 21% to 32%. Interestingly, d16ANme1Cas9 works in a PAM-independent way nor demands helper PAMmer molecules. LwaCas13a and RfxCas13d appeared substantially unfunctional in S. cerevisiae, though they were shown to perform well in mammalian cells. To the best of our knowledge, this is the first report about the working in vivo of a variant of Nme1Cas9 as an RNase and the issues connected with the usage of Cas13 proteins in S. cerevisiae.

7.
Life (Basel) ; 11(3)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802772

ABSTRACT

Among noncoding RNA sequences, riboswitches and ribozymes have attracted the attention of the synthetic biology community as circuit components for translation regulation. When fused to aptamer sequences, ribozymes and riboswitches are enabled to interact with chemicals. Therefore, protein synthesis can be controlled at the mRNA level without the need for transcription factors. Potentially, the use of chemical-responsive ribozymes/riboswitches would drastically simplify the design of genetic circuits. In this review, we describe synthetic RNA structures that have been used so far in the yeast Saccharomyces cerevisiae. We present their interaction mode with different chemicals (e.g., theophylline and antibiotics) or proteins (such as the RNase III) and their recent employment into clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas) systems. Particular attention is paid, throughout the whole paper, to their usage and performance into synthetic gene circuits.

8.
Int J Biol Macromol ; 116: 920-926, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29772337

ABSTRACT

The purpose of this study was to estimate the antibacterial properties of aqueous suspensions of dialdehyde microcrystalline cellulose (DAMC), and a model of the observed antibacterial kinetics was proposed and validated. The DAMC was prepared from microcrystalline cellulose by periodate oxidation. The bacterial inactivation kinetics of aqueous suspensions of DAMC was investigated by measuring the bactericidal effect after different contact times. The results indicated that with a DAMC aldehyde content of 6.34 mmol/g, the MICs for S. aureus, E. coli, B. subtilis and S. typhimurium were 15, 15, 15 and 30 mg/mL, respectively. This research thus establishes an antibacterial kinetics model of DAMC with 6.34 mmol/g of aldehyde content. At 37 °C and atmospheric pressure, the bacterial inactivation kinetic conformed to the equation: Log reduction of bacteria = - k [DAMC] t.


Subject(s)
Bacteria/growth & development , Cellulose/analogs & derivatives , Microbial Viability/drug effects , Models, Biological , Cellulose/chemistry , Cellulose/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL