Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
2.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119768, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838858

ABSTRACT

The regulatory mechanism of the transcription factor GATA3 in the differentiation and maturation process of extravillous trophoblasts (EVT) in early pregnancy placenta, as well as its relevance to the occurrence of pregnancy disorders, remains poorly understood. This study leveraged single-cell RNA sequencing data from placental organoid models and placental tissue to explore the dynamic changes in GATA3 expression during EVT maturation. The expression pattern exhibited an initial upregulation followed by subsequent downregulation, with aberrant GATA3 localization observed in cases of recurrent miscarriage (RM). By identifying global targets regulated by GATA3 in primary placental EVT cells, JEG3, and HTR8/SVneo cell lines, this study offered insights into its regulatory mechanisms across different EVT cell models. Shared regulatory targets among these cell types and activation of trophoblast cell marker genes emphasized the importance of GATA3 in EVT differentiation and maturation. Knockdown of GATA3 in JEG3 cells led to repression of GATA3-induced epithelial-mesenchymal transition (EMT), as evidenced by changes in marker gene expression levels and enhanced migration ability. Additionally, interference with GATA3 accelerated cellular senescence, as indicated by reduced proliferation rates and increased activity levels for senescence-associated ß-galactosidase enzyme, along with elevated expression levels for senescence-associated genes. This study provides comprehensive insights into the dual role of GATA3 in regulating EMT and cellular senescence during EVT differentiation, shedding light on the dynamic changes in GATA3 expression in normal and pathological placental conditions.

3.
Microbiol Spectr ; 11(6): e0120623, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37905802

ABSTRACT

IMPORTANCE: Plasmid size is one of the factors affecting transfection efficacy in most of the molecular genetic research studies. One effective approach for reducing plasmid size is to replace relatively large, conventional antibiotic resistance genes with the short-size dfrB10 gene. The successful construct of a series of dfrB10-based tool plasmids and their functional validation, via comparison with original plasmids, suggest that dfrB10 is a potent drug resistance selection marker. The antibiotic trimethoprim offers convenient usage comparable to that of ampicillin or kanamycin. Additionally, fluorescence analysis has demonstrated the compatibility of TMP with protein expression in various host cells. Based on these findings, TMP-dfrB10 could be an alternative choice for future use in molecular genetic research studies that require miniature plasmids to achieve optimal results.


Subject(s)
Anti-Bacterial Agents , Trimethoprim , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial
4.
Nat Immunol ; 24(8): 1295-1307, 2023 08.
Article in English | MEDLINE | ID: mdl-37474652

ABSTRACT

The transcription factor ThPOK (encoded by Zbtb7b) is well known for its role as a master regulator of CD4 lineage commitment in the thymus. Here, we report an unexpected and critical role of ThPOK as a multifaceted regulator of myeloid lineage commitment, differentiation and maturation. Using reporter and knockout mouse models combined with single-cell RNA-sequencing, progenitor transfer and colony assays, we show that ThPOK controls monocyte-dendritic cell versus granulocyte lineage production during homeostatic differentiation, and serves as a brake for neutrophil maturation in granulocyte lineage-specified cells through transcriptional regulation of lineage-specific transcription factors and RNA via altered messenger RNA splicing to reprogram intron retention.


Subject(s)
Gene Expression Regulation , Thymus Gland , Animals , Mice , Cell Differentiation , Cell Lineage , DNA-Binding Proteins , Mice, Knockout , RNA , Transcription Factors/genetics , CD4 Antigens
5.
Front Microbiol ; 13: 990231, 2022.
Article in English | MEDLINE | ID: mdl-36160239

ABSTRACT

Hydrophobins are small proteins from filamentous fungi, which have remarkable self-assembly properties of great potential, e.g., as drug carriers and as anti-bacterial agents, but different hydrophobins, with improved properties, are needed. HGFI (a hydrophobin from Grifola frondosa) is a class I hydrophobin, which can self-assemble into rodlet structures with a length range 100-150 nm. In this study, we identified a new hydrophobin gene (hgfII) from the mycelium of G. frondosa with a much higher transcriptional level than hgfI. Heterologous expression of hgfII was accomplished in the Pichia pastoris. X-ray photoelectron spectroscopy and water contact angle assay measurements revealed that HGFII can self-assemble into a protein film at the air-solid interface, with circular dichroism and thioflavin T fluorescence studies showing that this effect was accompanied by a decrease in α-helix content and an increase in ß-sheet content. Using atomic force microscopy, it was shown that HGFII self-assembled into rodlet-like structures with a diameter of 15-30 nm, showing that it was a class I hydrophobin, with self-assembly behavior different from HGFI. The surface hydrophobicity of HGFII was stronger than that of HGFI, meanwhile, in emulsification trials, HGFII displayed better dispersive capacity to the soybean oil than HGFI, producing a more stable and durable emulsion.

6.
Pharmaceutics ; 14(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35631682

ABSTRACT

Gene delivery holds great promise for bioengineering, biomedical applications, biosensors, diagnoses, and gene therapy. In particular, the influence of topography on gene delivery is considered to be an attractive approach due to low toxicity and localized delivery properties. Even though many gene vectors and transfection systems have been developed to enhance transfection potential and combining it with other forms of stimulations could even further enhance it. Topography is an interesting surface property that has been shown to stimulate differentiation, migration, cell morphology, and cell mechanics. Therefore, it is envisioned that topography might also be able to stimulate transfection. In this study, we tested the hypothesis "topography is able to regulate transfection efficiency", for which we used nano- and microwave-like topographical substrates with wavelengths ranging from 500 nm to 25 µm and assessed the transfectability of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and myoblasts. For transfection, Lipofectamine 2000 and a gene encoding plasmid for red-fluorescent protein (m-Cherry) were used and topography-induced cell morphology and transfection efficiency was analyzed. As a result, topography directs cell spreading, elongation, and proliferation as well as the transfection efficiency, which were investigated but were found not to be correlated and dependent on the cell type. A 55% percent improvement of transfection efficiency was identified for hBM-MSCs grown on 2 µm wrinkles (24.3%) as compared to hBM-MSCs cultured on flat controls (15.7%). For myoblast cells, the highest gene-expression efficiency (46.1%) was observed on the 10 µm topography, which enhanced the transfection efficiency by 64% as compared to the flat control (28.1%). From a qualitative assessment, it was observed that the uptake capacity of cationic complexes of TAMRA-labeled oligodeoxynucleotides (ODNs) was not topography-dependent but that the intracellular release was faster, as indicated by the positively stained nuclei on 2 µm for hBM-MSCs and 10 µm for myoblasts. The presented results indicate that topography enhances the gene-delivery capacity and that the responses are dependent on cell type. This study demonstrates the important role of topography on cell stimulation for gene delivery as well as understanding the uptake capacity of lipoplexes and may be useful for developing advanced nonviral gene delivery strategies.

7.
J Leukoc Biol ; 112(4): 669-677, 2022 10.
Article in English | MEDLINE | ID: mdl-35322464

ABSTRACT

Acute myeloid leukemia (AML) is a hematologic malignant disease largely affecting older adults with poor outcomes. Lack of effective targeted treatment is a major challenge in managing the disease in the clinic. Scaffolding adaptor Gab2 is amplified in a subset of AML. However, the causative role of Gab2 in AML remains to be explored. In this study, it was found that Gab2 was expressed at high levels in AML patient samples and AML cell lines. Experiments by knocking down Gab2 expression using shRNA showed that Gab2 promoted AML cell growth and migration in vitro and in vivo. Further studies using Gab2 mutants and pharmacological inhibitors revealed that Gab2 increased CREB phosphorylation via the SHP-2/Erk signaling pathway. CREB phosphorylation contributed to Gab2-induced cell migration by increasing MMP2 and MMP9 expression. This research indicates that high Gab2 expression promotes AML progression through the SHP2-Erk-CREB signaling pathway. CREB suppression may help treat AML with high Gab2 expression.


Subject(s)
Leukemia, Myeloid, Acute , Matrix Metalloproteinase 2 , Adaptor Proteins, Signal Transducing , Aged , Humans , Leukemia, Myeloid, Acute/genetics , Matrix Metalloproteinase 9 , RNA, Small Interfering/genetics , Signal Transduction
8.
Commun Biol ; 5(1): 84, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35064205

ABSTRACT

How multipotential cells initiate distinct gene expression programs in response to external cues to instruct cell fate choice remains a fundamental question in biology. Establishment of CD4 and CD8 T cell fates during thymocyte development is critically regulated by T cell receptor (TCR) signals, which in turn control expression of the CD4-determining transcription factor ThPOK. However, the mechanism whereby differential TCR signals are molecularly interpreted to promote or antagonize ThPOK expression, and thereby CD4 versus CD8 lineage fates remains unknown. Here we show, using reverse genetic and molecular approaches that an autonomous, position-independent TCR-sensing switch is embedded within the ThPOK locus. Further, using an in vivo mutagenesis approach, we demonstrate that differential TCR signals are interpreted during lineage commitment by relative binding of EGR, NFAT and Ebox factors to this bistable switch. Collectively our study reveals the central molecular mechanism whereby TCR signaling influences differential lineage choice. Ultimately, these findings may provide an important new tool for skewing T cell fate to treat cancer and autoimmune diseases.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , CD8-Positive T-Lymphocytes/physiology , Homeodomain Proteins/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Animals , Antibodies, Monoclonal , Biosensing Techniques , Gene Expression Regulation/physiology , Gene Silencing , Homeodomain Proteins/genetics , Mice , Mice, Transgenic , Receptors, Antigen, T-Cell, alpha-beta/genetics
9.
Article in English | WPRIM (Western Pacific) | ID: wpr-918750

ABSTRACT

Objective@#Adolescents are at a special stage of physical and mental development, which is a susceptible period for mental disorders. Since the outbreak of coronavirus pneumonia in December 2019, long term stress may have negative effects on the mental health of the adolescents. In the context of the coronavirus disease 2019 (COVID-19), the study was designed to investigate the mental and psychological health of adolescents in China and its possible related factors. @*Methods@#A cross-sectional study design was adopted using a structured questionnaire which were distributed through the Internet to measure depression, anxiety, life events and stress related factors. Descriptive statistics and multiple regression analyses were conducted to process the data. @*Results@#The final sample comprised 795 adolescents. The total detection rate of depression was 76.48% and the total detection rate of anxiety was 33.08%. ANOVA showed that there were significant differences in depression scores in terms of gender, anxiety scores, history of mental disorders, COVID-19 knowledge reserve, family and social contradictions (p<0.05). And there were significant differences in anxiety scores in terms of gender, depression scores, mental health knowledge reserves, family and social contradictions (p<0.05). Multiple regression analysis showed that anxiety score, health status and COVID-19 knowledge reserve were positively associated with depression score (p<0.01), and history of psychosocial disorders was negatively associated with depression score (p<0.05); depression score, family and social contradictions were significantly positively correlated with anxiety score (p<0.01), and history of mental disorders was significantly negatively correlated with SDS score (p<0.01). @*Conclusion@#During the outbreak of COVID-19, adolescent students with better understanding of the pandemic, more complete knowledge of mental health, and better family and social relationship had less impact on their mental health. Therefore, to ensure a sound social support system, elaborate health instruction, and family communication and mutual understanding are conducive to alleviating the psychological stress caused by the epidemic, and it is positive for adolescent students to maintain a good mental health.

10.
Journal of Integrative Medicine ; (12): 163-172, 2022.
Article in English | WPRIM (Western Pacific) | ID: wpr-929221

ABSTRACT

OBJECTIVE@#Moxibustion, a common therapy in traditional Chinese medicine, has potential benefits for treating decreased ovarian reserve (DOR). The present study investigates the protective effect of moxibustion in a rat model of DOR and explores the possible mechanisms.@*METHODS@#Sixty-four female Sprague-Dawley rats were randomly divided into four groups: control, DOR, moxibustion (MOX), and hormone replacement therapy (HRT). The DOR rat model was established by intragastric administration of 50 mg/kg Tripterygium glycoside suspension (TGS), once daily for 14 days. MOX and HRT treatments were given from the day TGS administration was initiated. The ovarian reserve function was evaluated by monitoring the estrus cycle, morphological changes in ovaries, levels of serum estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and anti-Mullerian hormone (AMH), pregnancy rate and embryo numbers. Terminal-deoxynucleotidyl transferase-mediated nick-end-labeling staining was used to identify ovarian granulosa cell apoptosis, while the protein and mRNA expressions of Bax, B-cell lymphoma-2 (Bcl-2), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) in ovarian tissues were examined by immunohistochemistry, Western blot and quantitative reverse transcription-polymerase chain reaction.@*RESULTS@#Compared with the DOR group, MOX improved the disordered estrous cycle, promoted follicular growth, reduced the number of atresia follicles, increased the concentrations of serum E2 and AMH, and decreased serum FSH and LH concentrations. More importantly, the pregnancy rate and embryo numbers in DOR rats were both upregulated in the MOX treatment group, compared to the untreated DOR model. Further, we found that the MOX group had reduced apoptosis of ovarian granulosa cells, increased Bcl-2 expression and reduced expression of Bax. Furthermore, the PI3K/AKT signaling pathway was triggered by the moxibustion treatment.@*CONCLUSION@#Moxibustion improved ovarian function and suppressed apoptosis of ovarian granulosa cells in a rat model of DOR induced by TGS, and the mechanism may involve the PI3K/AKT signaling pathway.


Subject(s)
Animals , Female , Pregnancy , Rats , Follicle Stimulating Hormone , Luteinizing Hormone , Moxibustion , Ovarian Reserve , Phosphatidylinositol 3-Kinase/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Rats, Sprague-Dawley , Signal Transduction , bcl-2-Associated X Protein/genetics
11.
Chin Med Sci J ; 36(3): 225-233, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34666876

ABSTRACT

Objective This study aimed to assess the protective value of adiponectin (APN) in pancreatic islet injury induced by chronic intermittent hypoxia (CIH). Methods Sixty rats were randomly divided into three groups: normal control (NC) group, CIH group, and CIH with APN supplement (CIH+APN) group. After 5 weeks of CIH exposure, we conducted oral glucose tolerance tests (OGTT) and insulin released test (IRT), examined and compared the adenosine triphosphate (ATP) levels, mitochondrial membrane potential (MMP) levels, reactive oxygen species (ROS) levels, enzymes gene expression levels of Ant1, Cs, Hmox1, and Cox4i1 which represented mitochondrial tricarboxylic acid cycle function, the protein and gene expression levels of DRP1, FIS1, MFN1, and OPA1 which represented mitochondrial fusion and division, and the protein expression levels of BAX, BCL-2, cleaved Caspase-3, and cleaved PARP which represented mitochondrial associated apoptosis pathway of pancreatic islet. Results OGTT and IRT showed blood glucose and insulin levels had no differences among the NC, CIH and CIH+APN groups (both P>0.05) at 0 min, 20 min, 30 min, 60 min, 120 min. However, we found that compared to NC group, CIH increased the ROS level, reduced ATP level and MMP level. The islets of CIH exposed rats showed reduced gene expression levels of Ant1, Cs, Hmox1, and Cox4i1, decreased protein and gene expression levels of MFN1 and OPA1, increased protein and gene expression levels of DRP1 and FIS1, increased protein expression levels of cleaved Caspase-3 and cleaved PARP, with lower ratio of BCL-2/BAX at protein expression level. All the differences among three groups were statistically significant. APN treated CIH rats showed mitigated changes in the above measurements associated with islet injuries. Conclusion APN may ameliorate the pancreatic islet injury induced by CIH via inhibiting the imbalance in mitochondrial fusion and division.


Subject(s)
Adiponectin , Islets of Langerhans , Adiponectin/genetics , Animals , Hypoxia , Mitochondrial Dynamics , Rats , Rats, Wistar
12.
Nat Immunol ; 22(8): 969-982, 2021 08.
Article in English | MEDLINE | ID: mdl-34312548

ABSTRACT

The transcription factor ThPOK (encoded by the Zbtb7b gene) controls homeostasis and differentiation of mature helper T cells, while opposing their differentiation to CD4+ intraepithelial lymphocytes (IELs) in the intestinal mucosa. Thus CD4 IEL differentiation requires ThPOK transcriptional repression via reactivation of the ThPOK transcriptional silencer element (SilThPOK). In the present study, we describe a new autoregulatory loop whereby ThPOK binds to the SilThPOK to maintain its own long-term expression in CD4 T cells. Disruption of this loop in vivo prevents persistent ThPOK expression, leads to genome-wide changes in chromatin accessibility and derepresses the colonic regulatory T (Treg) cell gene expression signature. This promotes selective differentiation of naive CD4 T cells into GITRloPD-1loCD25lo (Triplelo) Treg cells and conversion to CD4+ IELs in the gut, thereby providing dominant protection from colitis. Hence, the ThPOK autoregulatory loop represents a key mechanism to physiologically control ThPOK expression and T cell differentiation in the gut, with potential therapeutic relevance.


Subject(s)
DNA-Binding Proteins/metabolism , Intraepithelial Lymphocytes/cytology , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Regulatory/cytology , Transcription Factors/metabolism , Animals , Cell Differentiation/immunology , Colitis/immunology , Colitis/prevention & control , DNA-Binding Proteins/genetics , Disease Models, Animal , Female , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Transcription Factors/genetics , Transcription, Genetic/genetics
13.
Chem Rev ; 121(8): 4561-4677, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33705116

ABSTRACT

The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.


Subject(s)
Biocompatible Materials/chemistry , High-Throughput Screening Assays/methods , Animals , Humans , Materials Science/methods
14.
Biomed Pharmacother ; 134: 111108, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33341670

ABSTRACT

Doxorubicin (DOX) is limited to use in clinical practice because of poor targeting, serious side effects and multidrug resistance (MDR). Vitamin E and its derivatives are currently considered as hydrophobic material that can reverse tumor MDR by suppressing the action of p-glycoprotein (p-gp). Therefore, reduction-sensitive amphiphilic heparosan polysaccharide-cystamine-vitamin E succinate (KSV) copolymers were designed to reverse breast cancer MDR cells. The spherical micelles (DOX/KSV) micelles which had suitable particle size presented redox-sensitive release character. Simultaneously, DOX-loaded reduction insensitive heparosan-adipic dihydrazide-vitamin E succinate (KV) micellar system was designed as a control. DOX/KSV and DOX/KV micelles had the higher capability to overcome tumor MDR than that free DOX. However, DOX/KSV had the highest amount of cellular uptake which might be caused by the synergistic intracellular drug release and inhibition of p-gp expression. The mechanism experiments revealed that DOX/KSV could be fast disassembled to release DOX after internalization into tumor cells. Moreover, DOX/KSV produced more ROS than free DOX and DOX/KV resulting in enhanced anticancer effect. In vivo tumor-bearing mice study suggested that DOX/KSV micelles could efficiently enhance antitumor effect by overcoming tumor MDR and reduce toxicity of DOX. The DOX/KSV micelles could synergistically increase the therapeutic effect of chemotherapeutic drug on tumor MDR cells.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Antibiotics, Antineoplastic/pharmacology , Breast Neoplasms/drug therapy , Cystamine/pharmacology , Disaccharides/pharmacology , Doxorubicin/pharmacology , Drug Resistance, Multiple , Drug Resistance, Neoplasm , alpha-Tocopherol/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Antibiotics, Antineoplastic/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cystamine/metabolism , Disaccharides/metabolism , Doxorubicin/metabolism , Drug Compounding , Drug Liberation , Female , Humans , MCF-7 Cells , Mice, Nude , Micelles , Reactive Oxygen Species/metabolism , Xenograft Model Antitumor Assays , alpha-Tocopherol/metabolism
15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-930357

ABSTRACT

Human adenoviruses (HAdVs) are the common infectious pathogens in children, which mainly infect the respiratory tract, digestive tract and eyes.Severe HAdVs may even be life-threatening.HAdVs enter the host and cause infection by binding to the host epithelial cells.At the same time, they are recognized by various immune cells and then activate the immune defense response.This study aims to review the interaction between HAdVs and the host, and the immune defense mechanism, thus improving the understanding of the immune response to HAdVs.

16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-877549

ABSTRACT

OBJECTIVE@#To observe the effect of moxibustion on Nrf2/HO-1 signaling pathway in rats with diminished ovarian reserve (DOR), and to explore the protective mechanism of moxibustion on ovarian reserve function.@*METHODS@#Forty SD rats were randomly divided into a blank group, a model group, a moxibustion group and a hormone group, 10 rats in each group. The rats in the model group, moxibustion group and hormone group were treated with intragastric administration of tripterysium glycosides turbid liquid to prepare DOR model. The rats in the blank group were treated with intragastric administration of sodium chloride solution with the same volume, once a day for 14 days. The rats in the hormone group were treated with hormone sequential therapy for 14 days from the day of modeling; the rats in the moxibustion group were treated with moxibustion at bilateral "Shenshu" (BL 23) or "Guanyuan" (CV 4) and "Zhongwan" (CV 12) from the day of modeling, and the two groups acupoints were alternated every other day, 10 min each time, for 14 consecutive days. The estrus cycle was observed every day by vaginal exfoliated cell smear, and the estrus cycle disorder rate in each group was calculated. After the intervention, the HE staining was used to observe the histological morphology of ovaries; ELISA was used to detect the contents of follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E@*RESULTS@#Compared with the blank group, the rate of estrus cycle disorder in the model group was increased (@*CONCLUSION@#Moxibustion could reduce the rate of estrus cycle disorder, improve the level of serum sex hormones and antioxidant stress in DOR rats, and the mechanism may be related to the regulation of Nrf2/HO-1 signaling pathway.


Subject(s)
Animals , Female , Humans , Rats , Moxibustion , NF-E2-Related Factor 2/metabolism , Ovarian Reserve , Rats, Sprague-Dawley , Signal Transduction
17.
Adv Healthc Mater ; 9(11): e2000117, 2020 06.
Article in English | MEDLINE | ID: mdl-32363812

ABSTRACT

Biophysical factors such as anisotropic topography composed of micro/nanosized structures are important for directing the fate of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and have been applied to neuronal differentiation. Via high-throughput screening (HTS) methods based on topography gradients, the optimum topography is determined and translated toward a hierarchical architecture designed to mimic the nerve nano/microstructure. The polydimethylsiloxane (PDMS)-based topography gradient with amplitudes (A) from 541 to 3073 nm and wavelengths (W) between 4 and 30 µm is developed and the fate commitment of MSC toward neuron lineage is investigated. The hierarchical structures, combining nano- and microtopography (W0.3/W26 parallel/perpendicular) are fabricated to explore the combined topography effects on neuron differentiation. From the immunofluorescent staining results (Tuj1 and MAP2), the substrate characterized by W: 26 µm; A: 2.9 µm shows highest potential for promoting neurogenesis. Furthermore, the hierarchical features (W0.3/W26 parallel) significantly enhance neural differentiation. The hBM-MSCs on the hierarchical substrates exhibit a significantly lower percentage of nuclear Yes-associated protein (YAP)/TAZ and weaker cell contractility indicating that the promoted neurogenesis is mediated by the cell tension and YAP/TAZ pathway. This research provides new insight into designing biomaterials for applications in neural tissue engineering and contributes to the understanding of topography-mediated neuronal differentiation.


Subject(s)
Mesenchymal Stem Cells , Cell Differentiation , High-Throughput Screening Assays , Humans , Neurogenesis , Neurons
18.
ACS Appl Mater Interfaces ; 12(23): 25591-25603, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32423202

ABSTRACT

Cell-derived matrices (CDMs) are an interesting alternative to conventional sources of extracellular matrices (ECMs) as CDMs mimic the natural ECM composition better and are therefore attractive as a scaffolding material for regulating the functions of stem cells. Previous research on stem cell differentiation has demonstrated that both surface topography and CDMs have a significant influence. However, not much focus has been devoted to elucidating possible synergistic effects of CDMs and topography on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). In this study, polydimethylsiloxane (PDMS)-based anisotropic topographies (wrinkles) with various topography dimensions were prepared and subsequently combined with native ECMs produced by human fibroblasts that remained on the surface topography after decellularization. The synergistic effect of CDMs combined with topography on osteogenic differentiation of hBM-MSCs was investigated. The results showed that substrates with specific topography dimensions, coated with aligned CDMs, dramatically enhanced the capacity of osteogenesis as investigated using immunofluorescence staining for identifying osteopontin (OPN) and mineralization. Furthermore, the hBM-MSCs on the substrates decorated with CDMs exhibited a higher percentage of (Yes-associated protein) YAP inside the nucleus, stronger cell contractility, and greater formation of focal adhesions, illustrating that enhanced osteogenesis is partly mediated by cellular tension and mechanotransduction following the YAP pathway. Taken together, our findings highlight the importance of ECMs mediating the osteogenic differentiation of stem cells, and the combination of CDMs and topography will be a powerful approach for material-driven osteogenesis.


Subject(s)
Extracellular Matrix/metabolism , Mesenchymal Stem Cells/metabolism , Osteogenesis/physiology , Adaptor Proteins, Signal Transducing/metabolism , Anisotropy , Cell Differentiation/physiology , Dimethylpolysiloxanes/chemistry , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Mechanotransduction, Cellular/physiology , Mesenchymal Stem Cells/cytology , Surface Properties , Transcription Factors/metabolism , Vinculin/metabolism , YAP-Signaling Proteins
19.
Biomater Sci ; 8(9): 2638-2652, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32248219

ABSTRACT

Topography-driven alterations in cell morphology tremendously influence cell biological processes, particularly stem cell differentiation. Aligned topography is known to alter the cell shape, which we anticipated to also induce altered physical properties of the cell. Here, we show that topography has a significant influence on single cell stiffness of human bone marrow derived-Mesenchymal Stem Cells (hBM-MSCs) and the osteogenic differentiation of these. Aligned topographies were used to control the cell elongation, depicted as the cell aspect ratio (CAR). Intriguingly, an equal CAR elicited from different topographies, resulted in highly altered differentiation behavior and the underlying single cell mechanics was found to be critical. The cell behavior was found to be focal adhesion-mediated and induced stiffness alterations rather than just influencing the cell elongation. The effect was further corroborated by investigations of the transcriptional regulators YAP. Our study provides insight into how mechanical properties of the cell, which are stimulated by topography, modulate the osteogenesis of hBM-MSCs, which is beneficial for improving the understanding of interactions between stem cells and topography for developing applications of tissue engineering and regenerative medicine.


Subject(s)
Mesenchymal Stem Cells/physiology , Osteogenesis , Cell Differentiation , Cell Shape , Cells, Cultured , Elastic Modulus , Focal Adhesions , Humans
20.
J Leukoc Biol ; 107(4): 685-693, 2020 04.
Article in English | MEDLINE | ID: mdl-32125014

ABSTRACT

As a subtype of acute myeloid leukemia (AML), acute promyelocytic leukemia (APL) is characterized by a chromosomal translocation, most of which result in the production of a PML-RAR alpha fusion protein. Although the overall survival rate of APL patients has improved dramatically due to all-trans retinoic acid (ATRA) treatment, ATRA-resistance remains a clinical challenge in the management of APL. Therefore, alternative agents should be considered for ATRA-resistant APL patients. Here, we report that antimalaria drug primaquine phosphate (PRQ) exhibits an anti-leukemia effect on both ATRA-sensitive cell line NB4 and ATRA-resistant APL cell lines, NB4-LR2, NB4-LR1, and NB4-MR2. Moreover, PRQ significantly inhibited primary colony formation of untreated or relapsed APL patients. Further study showed that PRQ could induce the apoptosis of APL cells by inhibiting NF-κB signaling pathway. The in vivo study showed that PRQ significantly inhibited NB4-LR2 xenograft tumors growth. These results suggest that PRQ is a potential therapeutic agent for ATRA-resistant APL patients.


Subject(s)
Apoptosis/drug effects , Drug Resistance, Neoplasm/drug effects , Leukemia, Promyelocytic, Acute/pathology , NF-kappa B/metabolism , Primaquine/pharmacology , Signal Transduction , Tretinoin/pharmacology , Adult , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Primaquine/chemistry , Signal Transduction/drug effects , Tumor Stem Cell Assay , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...