Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Article in English | MEDLINE | ID: mdl-38961844

ABSTRACT

Chronic kidney disease (CKD) is associated with renal lipid dysmetabolism among a variety of other pathways. We recently demonstrated that oxysterol-binding protein like 7 (OSBPL7) modulates the expression and function of ATP Binding Cassette Subfamily A Member 1 (ABCA1) in podocytes, a specialized type of cell essential for kidney filtration. Drugs that target OSBPL7 lead to improved renal outcomes in several experimental models of CKD. However, the role of OSBPL7 in podocyte injury remains unclear. Employing mouse models and cellular assays, we investigated the influence of OSBPL7 deficiency on podocytes. We demonstrated that reduced renal OSBPL7 levels as observed in two different models of experimental CKD are linked to increased podocyte apoptosis, primarily mediated by heightened endoplasmic reticulum (ER) stress. While as expected the absence of OSBPL7 also resulted in lipid dysregulation (increased lipid droplets and triglycerides content), OSBPL7-deficiency related lipid dysmetabolism did not contribute to podocyte injury. Similarly, we demonstrated that the decreased autophagic flux we observed in OSBPL7-deficient podocytes was not the mechanistic link between OSBPL7-deficiency and apoptosis. In a complementary zebrafish model, osbpl7 knockdown was sufficient to induce proteinuria and morphological damage to the glomerulus, underscoring its physiological relevance. Our study shed new light on the mechanistic link between OSBPL7 deficiency and podocyte injury in glomerular diseases associated with CKD, and it strengthen the role of OSBPL7 as a novel therapeutic target.

3.
J Agric Food Chem ; 71(48): 18709-18721, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38009539

ABSTRACT

The stereoselective behaviors and dietary risks of metconazole (MZE) in soil and five vegetables were investigated. The results showed that there was species-specific stereoselective and diastereoselective dissipation, and the half-lives ranged from 0.69 to 8.17 days. cis-(+)-1S,5R-MZE was preferentially dissipated in soybean pods, cabbages, celeries, and tomatoes, which was contrary to soybean plants and soil. trans-(+)-1R,5R-MZE was preferentially dissipated in peanut plants, peanut shells, celeries, and tomatoes, while trans-(-)-1S,5S-MZE was preferentially dissipated in soybean plants. cis-MZE was preferentially dissipated in the test vegetables and soil, except celery. The stereoisomeric excess changes were higher than 10%, indicating that the stereoselectivity and diastereoselectivity should be considered in the risk assessment of MZE in soybean plants, pods, and peanut plants. The acute and chronic dietary intake risks of rac-MZE for different groups of people were acceptable. The preferentially dissipated and high activity cis-(+)-1S,5R-MZE with lower toxicity might be suitable for application as monocase.


Subject(s)
Apium , Brassica , Soil Pollutants , Solanum lycopersicum , Humans , Vegetables , Glycine max , Arachis , Soil , Stereoisomerism , Risk Assessment , Soil Pollutants/analysis
4.
Sci Rep ; 13(1): 9616, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316538

ABSTRACT

Decreased ATP Binding Cassette Transporter A1 (ABCA1) expression and caspase-4-mediated noncanonical inflammasome contribution have been described in podocytes in diabetic kidney disease (DKD). To investigate a link between these pathways, we evaluated pyroptosis-related mediators in human podocytes with stable knockdown of ABCA1 (siABCA1) and found that mRNA levels of IRF1, caspase-4, GSDMD, caspase-1 and IL1ß were significantly increased in siABCA1 compared to control podocytes and that protein levels of caspase-4, GSDMD and IL1ß were equally increased. IRF1 knockdown in siABCA1 podocytes prevented increases in caspase-4, GSDMD and IL1ß. Whereas TLR4 inhibition did not decrease mRNA levels of IRF1 and caspase-4, APE1 protein expression increased in siABCA1 podocytes and an APE1 redox inhibitor abrogated siABCA1-induced expression of IRF1 and caspase-4. RELA knockdown also offset the pyroptosis priming, but ChIP did not demonstrate increased binding of NFκB to IRF1 promoter in siABCA1 podocytes. Finally, the APE1/IRF1/Casp1 axis was investigated in vivo. APE1 IF staining and mRNA levels of IRF1 and caspase 11 were increased in glomeruli of BTBR ob/ob compared to wildtype. In conclusion, ABCA1 deficiency in podocytes caused APE1 accumulation, which reduces transcription factors to increase the expression of IRF1 and IRF1 target inflammasome-related genes, leading to pyroptosispriming.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Podocytes , Humans , Diabetic Nephropathies/genetics , Inflammasomes , Pyroptosis , Caspase 1/genetics , Caspases , Interferon Regulatory Factor-1/genetics , ATP Binding Cassette Transporter 1/genetics
5.
Elife ; 122023 05 02.
Article in English | MEDLINE | ID: mdl-37129368

ABSTRACT

Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are anti-hyperglycemic agents that prevent glucose reabsorption in proximal tubular cells. SGLT2i improves renal outcomes in both diabetic and non-diabetic patients, indicating it may have beneficial effects beyond glycemic control. Here, we demonstrate that SGLT2i affects energy metabolism and podocyte lipotoxicity in experimental Alport syndrome (AS). In vitro, we found that the SGLT2 protein was expressed in human and mouse podocytes to a similar extent in tubular cells. Newly established immortalized podocytes from Col4a3 knockout mice (AS podocytes) accumulate lipid droplets along with increased apoptosis when compared to wild-type podocytes. Treatment with SGLT2i empagliflozin reduces lipid droplet accumulation and apoptosis in AS podocytes. Empagliflozin inhibits the utilization of glucose/pyruvate as a metabolic substrate in AS podocytes but not in AS tubular cells. In vivo, we demonstrate that empagliflozin reduces albuminuria and prolongs the survival of AS mice. Empagliflozin-treated AS mice show decreased serum blood urea nitrogen and creatinine levels in association with reduced triglyceride and cholesterol ester content in kidney cortices when compared to AS mice. Lipid accumulation in kidney cortices correlates with a decline in renal function. In summary, empagliflozin reduces podocyte lipotoxicity and improves kidney function in experimental AS in association with the energy substrates switch from glucose to fatty acids in podocytes.


Subject(s)
Diabetes Mellitus, Type 2 , Nephritis, Hereditary , Podocytes , Sodium-Glucose Transporter 2 Inhibitors , Humans , Mice , Animals , Podocytes/metabolism , Nephritis, Hereditary/drug therapy , Nephritis, Hereditary/metabolism , Diabetes Mellitus, Type 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Glucose/toxicity , Glucose/metabolism
6.
J Org Chem ; 88(1): 513-524, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36545950

ABSTRACT

Herein, the efficient photoredox/nickel dual-catalyzed cyanoalkylation reaction of enamides is illustrated. A wide scope of enamides and cycloketone oxime esters was well-tolerated, affording the synthetically versatile and geometrically defined ß-cyanoalkylated enamide scaffolds. The synthetic practicality of this protocol was revealed by gram-scale reactions, further transformations of enamides, and late-stage modifications of biologically active molecules.


Subject(s)
Amides , Nickel , Molecular Structure , Catalysis
7.
J Am Soc Nephrol ; 33(12): 2153-2173, 2022 12.
Article in English | MEDLINE | ID: mdl-36198430

ABSTRACT

BACKGROUND: The signaling molecule stimulator of IFN genes (STING) was identified as a crucial regulator of the DNA-sensing cyclic GMP-AMP synthase (cGAS)-STING pathway, and this signaling pathway regulates inflammation and energy homeostasis under conditions of obesity, kidney fibrosis, and AKI. However, the role of STING in causing CKD, including diabetic kidney disease (DKD) and Alport syndrome, is unknown. METHODS: To investigate whether STING activation contributes to the development and progression of glomerular diseases such as DKD and Alport syndrome, immortalized human and murine podocytes were differentiated for 14 days and treated with a STING-specific agonist. We used diabetic db/db mice, mice with experimental Alport syndrome, C57BL/6 mice, and STING knockout mice to assess the role of the STING signaling pathway in kidney failure. RESULTS: In vitro, murine and human podocytes express all of the components of the cGAS-STING pathway. In vivo, activation of STING renders C57BL/6 mice susceptible to albuminuria and podocyte loss. STING is activated at baseline in mice with experimental DKD and Alport syndrome. STING activation occurs in the glomerular but not the tubulointerstitial compartment in association with autophagic podocyte death in Alport syndrome mice and with apoptotic podocyte death in DKD mouse models. Genetic or pharmacologic inhibition of STING protects from progression of kidney disease in mice with DKD and Alport syndrome and increases lifespan in Alport syndrome mice. CONCLUSION: The activation of the STING pathway acts as a mediator of disease progression in DKD and Alport syndrome. Targeting STING may offer a therapeutic option to treat glomerular diseases of metabolic and nonmetabolic origin or prevent their development, progression, or both.


Subject(s)
Diabetic Nephropathies , Nephritis, Hereditary , Podocytes , Mice , Humans , Animals , Nephritis, Hereditary/genetics , Nephritis, Hereditary/metabolism , Mice, Inbred C57BL , Podocytes/metabolism , Proteinuria/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Mice, Knockout , Nucleotidyltransferases/metabolism
8.
Contrast Media Mol Imaging ; 2022: 4315361, 2022.
Article in English | MEDLINE | ID: mdl-35935312

ABSTRACT

The effectiveness of the multidisciplinary nursing model in the nursing of chronic kidney disease (CKD) by using meta-analysis is explored. Relevant literatures that are in line with the multidisciplinary nursing model for CKD intervention are searched and screened from domestic and foreign literature databases such as Wanfang Medical Center, CNKNET, VIP, and PubMed, and Meta-analysis is conducted with RevMan 5.2 software. A total of 6 literatures are included, and the publication bias of the included literatures is low. Meta-analysis shows that the multidisciplinary group had a better Hb compliance rate, Hb level, Scr, eGFR, SBP, and DBP than the traditional group. The experimental results show that multidisciplinary nursing intervention can improve the nursing effect of patients with CKD and help to improve Hb, Scr, blood pressure, and glomerular filtration function of patients.


Subject(s)
Renal Insufficiency, Chronic , Blood Pressure , Humans , Renal Insufficiency, Chronic/therapy
9.
J Org Chem ; 87(7): 4654-4669, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35313107

ABSTRACT

Herein, a new strategy for the synthesis of monofluoroalkenes via employing α-fluoroacrylic acids and N-hydroxyphthalimide (NHPI) redox-active esters as coupling partners has been developed. This decarboxylative reaction enabled the formation of C(sp2)-C(sp3) bonds to provide a practical and efficient approach for the construction of a variety of monofluoroalkenes, which are key structural motifs in organic chemistry, under mild reaction conditions. The protocol exhibited excellent functional group compatibility and delivered monofluoroalkene products with excellent Z-stereoselectivity. This work also provides a platform for the modification of complex biologically active molecules containing carboxylic acids.


Subject(s)
Carboxylic Acids , Esters , Carboxylic Acids/chemistry , Decarboxylation , Esters/chemistry , Oxidation-Reduction
11.
Kidney Int ; 101(3): 454-456, 2022 03.
Article in English | MEDLINE | ID: mdl-35190031

ABSTRACT

Lipid dysmetabolism is emerging as an important contributor to diabetic kidney disease, suggesting that intrarenal lipid accumulation is detrimental to kidney function. This commentary discusses the finding by Yoshioka et al., connecting tubular lipotoxicity induced by an increase in locally produced lysophosphatidylcholine in patients with a fast progression of diabetic kidney disease, known as "fast decliner." Insight into the lipid species in the kidney may prove beneficial for the diagnosis and stratification of patients with diabetic kidney disease.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Diabetic Nephropathies/etiology , Humans , Kidney , Nephrons
12.
Nat Commun ; 12(1): 4662, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34341345

ABSTRACT

Impaired cellular cholesterol efflux is a key factor in the progression of renal, cardiovascular, and autoimmune diseases. Here we describe a class of 5-arylnicotinamide compounds, identified through phenotypic drug discovery, that upregulate ABCA1-dependent cholesterol efflux by targeting Oxysterol Binding Protein Like 7 (OSBPL7). OSBPL7 was identified as the molecular target of these compounds through a chemical biology approach, employing a photoactivatable 5-arylnicotinamide derivative in a cellular cross-linking/immunoprecipitation assay. Further evaluation of two compounds (Cpd A and Cpd G) showed that they induced ABCA1 and cholesterol efflux from podocytes in vitro and normalized proteinuria and prevented renal function decline in mouse models of proteinuric kidney disease: Adriamycin-induced nephropathy and Alport Syndrome. In conclusion, we show that small molecule drugs targeting OSBPL7 reveal an alternative mechanism to upregulate ABCA1, and may represent a promising new therapeutic strategy for the treatment of renal diseases and other disorders of cellular cholesterol homeostasis.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Cholesterol/metabolism , Diabetic Nephropathies/metabolism , Organic Chemicals/pharmacology , Podocytes/metabolism , Proteinuria/metabolism , Receptors, Steroid/antagonists & inhibitors , ATP Binding Cassette Transporter 1/genetics , Animals , Biological Transport/drug effects , Cells, Cultured , Disease Models, Animal , HEK293 Cells , Humans , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Mice, 129 Strain , Mice, Knockout , Molecular Structure , Niacinamide/chemistry , Niacinamide/pharmacology , Organic Chemicals/chemical synthesis , Organic Chemicals/chemistry , Podocytes/cytology , RNA Interference , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , THP-1 Cells
13.
J Pers Med ; 11(8)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34442464

ABSTRACT

Although dyslipidemia is associated with chronic kidney disease (CKD), it is more common in nephrotic syndrome (NS), and guidelines for the management of hyperlipidemia in NS are largely opinion-based. In addition to the role of circulating lipids, an increasing number of studies suggest that intrarenal lipids contribute to the progression of glomerular diseases, indicating that proteinuric kidney diseases may be a form of "fatty kidney disease" and that reducing intracellular lipids could represent a new therapeutic approach to slow the progression of CKD. In this review, we summarize recent progress made in the utilization of lipid-modifying agents to lower renal parenchymal lipid accumulation and to prevent or reduce kidney injury. The agents mentioned in this review are categorized according to their specific targets, but they may also regulate other lipid-relevant pathways.

14.
Hum Mol Genet ; 30(3-4): 182-197, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33517446

ABSTRACT

Lipotoxicity was recently reported in several forms of kidney disease, including focal segmental glomerulosclerosis (FSGS). Susceptibility to FSGS in African Americans is associated with the presence of genetic variants of the Apolipoprotein L1 gene (APOL1) named G1 and G2. If and how endogenous APOL1 may alter mitochondrial function by the modifying cellular lipid metabolism is unknown. Using transgenic mice expressing the APOL1 variants (G0, G1 or G2) under endogenous promoter, we show that APOL1 risk variant expression in transgenic mice does not impair kidney function at baseline. However, APOL1 G1 expression worsens proteinuria and kidney function in mice characterized by the podocyte inducible expression of nuclear factor of activated T-cells (NFAT), which we have found to cause FSGS. APOL1 G1 expression in this FSGS-model also results in increased triglyceride and cholesterol ester contents in kidney cortices, where lipid accumulation correlated with loss of renal function. In vitro, we show that the expression of endogenous APOL1 G1/G2 in human urinary podocytes is associated with increased cellular triglyceride content and is accompanied by mitochondrial dysfunction in the presence of compensatory oxidative phosphorylation (OXPHOS) complexes elevation. Our findings indicate that APOL1 risk variant expression increases the susceptibility to lipid-dependent podocyte injury, ultimately leading to mitochondrial dysfunction.


Subject(s)
Apolipoprotein L1/genetics , Genetic Variation , Glomerulosclerosis, Focal Segmental/metabolism , Lipid Metabolism , Mitochondria/metabolism , Podocytes/metabolism , Black or African American/genetics , Animals , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/physiopathology , Homeostasis , Humans , Mice , Mice, Transgenic , Mitochondria/physiology , Podocytes/physiology , Proteinuria , Triglycerides/metabolism
15.
EBioMedicine ; 63: 103162, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33340991

ABSTRACT

BACKGROUND: Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that is activated by collagens that is involved in the pathogenesis of fibrotic disorders. Interestingly, de novo production of the collagen type I (Col I) has been observed in Col4a3 knockout mice, a mouse model of Alport Syndrome (AS mice). Deletion of the DDR1 in AS mice was shown to improve survival and renal function. However, the mechanisms driving DDR1-dependent fibrosis remain largely unknown. METHODS: Podocyte pDDR1 levels, Collagen and cluster of differentiation 36 (CD36) expression was analyzed by Real-time PCR and Western blot. Lipid droplet accumulation and content was determined using Bodipy staining and enzymatic analysis. CD36 and DDR1 interaction was determined by co-immunoprecipitation. Creatinine, BUN, albuminuria, lipid content, and histological and morphological assessment of kidneys harvested from AS mice treated with Ezetimibe and/or Ramipril or vehicle was performed. FINDINGS: We demonstrate that Col I-mediated DDR1 activation induces CD36-mediated podocyte lipotoxic injury. We show that Ezetimibe interferes with the CD36/DDR1 interaction in vitro and prevents lipotoxicity in AS mice thus preserving renal function similarly to ramipril. INTERPRETATION: Our study suggests that Col I/DDR1-mediated lipotoxicity contributes to renal failure in AS and that targeting this pathway may represent a new therapeutic strategy for patients with AS and with chronic kidney diseases (CKD) associated with Col4 mutations. FUNDING: This study is supported by the NIH grants R01DK117599, R01DK104753, R01CA227493, U54DK083912, UM1DK100846, U01DK116101, UL1TR000460 (Miami Clinical Translational Science Institute, National Center for Advancing Translational Sciences and the National Institute on Minority Health and Health Disparities), F32DK115109, Hoffmann-La Roche and Alport Syndrome Foundation.


Subject(s)
Discoidin Domain Receptor 1/metabolism , Extracellular Matrix/metabolism , Nephritis, Hereditary/metabolism , Podocytes/metabolism , Animals , Biomarkers , CD36 Antigens/metabolism , Cell Line , Collagen Type I/metabolism , Discoidin Domain Receptor 1/genetics , Disease Models, Animal , Disease Susceptibility , Fibrosis , Gene Expression , Humans , Immunohistochemistry/methods , Lipid Droplets/metabolism , Lipid Metabolism , Mice , Mice, Knockout , Nephritis, Hereditary/etiology , Nephritis, Hereditary/pathology , Phosphorylation , Podocytes/pathology
16.
Front Physiol ; 11: 732, 2020.
Article in English | MEDLINE | ID: mdl-32733268

ABSTRACT

The kidney is one of the most energy-demanding organs that require abundant and healthy mitochondria to maintain proper function. Increasing evidence suggests a strong association between mitochondrial dysfunction and chronic kidney diseases (CKDs). Lipids are not only important sources of energy but also essential components of mitochondrial membrane structures. Dysregulation of mitochondrial oxidative metabolism and increased reactive oxygen species (ROS) production lead to compromised mitochondrial lipid utilization, resulting in lipid accumulation and renal lipotoxicity. However, lipotoxicity can be either the cause or the consequence of mitochondrial dysfunction. Imbalanced lipid metabolism, in turn, can hamper mitochondrial dynamics, contributing to the alteration of mitochondrial lipids and reduction in mitochondrial function. In this review, we summarize the interplay between renal lipotoxicity and mitochondrial dysfunction, with a focus on glomerular diseases.

17.
Kidney Int ; 98(5): 1275-1285, 2020 11.
Article in English | MEDLINE | ID: mdl-32739420

ABSTRACT

Defective cholesterol metabolism primarily linked to reduced ATP-binding cassette transporter A1 (ABCA1) expression is closely associated with the pathogenesis and progression of kidney diseases, including diabetic kidney disease and Alport Syndrome. However, whether the accumulation of free or esterified cholesterol contributes to progression in kidney disease remains unclear. Here, we demonstrate that inhibition of sterol-O-acyltransferase-1 (SOAT1), the enzyme at the endoplasmic reticulum that converts free cholesterol to cholesterol esters, which are then stored in lipid droplets, effectively reduced cholesterol ester and lipid droplet formation in human podocytes. Furthermore, we found that inhibition of SOAT1 in podocytes reduced lipotoxicity-mediated podocyte injury in diabetic kidney disease and Alport Syndrome in association with increased ABCA1 expression and ABCA1-mediated cholesterol efflux. In vivo, Soat1 deficient mice did not develop albuminuria or mesangial expansion at 10-12 months of age. However, Soat1 deficiency/inhibition in experimental models of diabetic kidney disease and Alport Syndrome reduced cholesterol ester content in kidney cortices and protected from disease progression. Thus, targeting SOAT1-mediated cholesterol metabolism may represent a new therapeutic strategy to treat kidney disease in patients with diabetic kidney disease and Alport Syndrome, like that suggested for Alzheimer's disease and cancer treatments.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Nephritis, Hereditary , Podocytes , Albuminuria , Animals , Cholesterol , Diabetic Nephropathies/etiology , Humans , Mice , Nephritis, Hereditary/genetics
18.
J Clin Invest ; 129(8): 3387-3400, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31329164

ABSTRACT

Fibroblasts from patients with Tangier disease carrying ATP-binding cassette A1 (ABCA1) loss-of-function mutations are characterized by cardiolipin accumulation, a mitochondrial-specific phospholipid. Suppression of ABCA1 expression occurs in glomeruli from patients with diabetic kidney disease (DKD) and in human podocytes exposed to DKD sera collected prior to the development of DKD. We demonstrated that siRNA ABCA1 knockdown in podocytes led to reduced oxygen consumption capabilities associated with alterations in the oxidative phosphorylation (OXPHOS) complexes and with cardiolipin accumulation. Podocyte-specific deletion of Abca1 (Abca1fl/fl) rendered mice susceptible to DKD, and pharmacological induction of ABCA1 improved established DKD. This was not mediated by free cholesterol, as genetic deletion of sterol-o-acyltransferase-1 (SOAT1) in Abca1fl/fl mice was sufficient to cause free cholesterol accumulation but did not cause glomerular injury. Instead, cardiolipin mediates ABCA1-dependent susceptibility to podocyte injury, as inhibition of cardiolipin peroxidation with elamipretide improved DKD in vivo and prevented ABCA1-dependent podocyte injury in vitro and in vivo. Collectively, we describe a pathway definitively linking ABCA1 deficiency to cardiolipin-driven mitochondrial dysfunction. We demonstrated that this pathway is relevant to DKD and that ABCA1 inducers or inhibitors of cardiolipin peroxidation may each represent therapeutic strategies for the treatment of established DKD.


Subject(s)
ATP Binding Cassette Transporter 1/deficiency , Cardiolipins/metabolism , Diabetic Nephropathies/metabolism , Lipid Peroxidation , Mitochondria/metabolism , ATP Binding Cassette Transporter 1/metabolism , Animals , Cardiolipins/genetics , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Humans , Mice , Mitochondria/genetics , Mitochondria/pathology , Podocytes , Sterol O-Acyltransferase/genetics , Sterol O-Acyltransferase/metabolism
19.
PLoS One ; 14(4): e0211559, 2019.
Article in English | MEDLINE | ID: mdl-30998685

ABSTRACT

Apolipoprotein L1 (APOL1) genetic variants G1 and G2, compared to the common allele G0, are major risk factors for non-diabetic kidney disease in African descent populations. APOL1 is a minor protein component of HDL, as well as being expressed in podocytes and vascular cells. Reverse cholesterol transport involves the transport of cholesterol to HDL by cellular ATP-binding cassette; ABCA1 and ABCG1 with subsequent delivery from peripheral tissues to the liver. With impaired reverse cholesterol transport, lipid accumulation occurs and macrophages morphologically transform into foam cells, releasing inflammatory factors. We asked whether the APOL1 risk variants alter peripheral cholesterol metabolism and specifically affect macrophage cholesterol efflux. Tissues and bone marrow (BM)-derived monocytes were isolated from wild-type mice (WT) and from BAC/APOL1 transgenic (APOL1-G0, APOL1-G1, and APOL1-G2) mice, which carry a bacterial artificial chromosome that contains the human APOL1 genomic region. Monocytes were differentiated into macrophages using M-CSF, and then polarized into M1 and M2 macrophages. Cholesterol content, cholesterol efflux, and ABCA1 and ABCG1 mRNA expression were measured. Kidney, spleen, and bone marrow-derived macrophages from APOL1-G1 and -G2 mice showed increased cholesterol accumulation and decreased ABCA1 and ABCG1 mRNA levels. BM-derived macrophages from APOL1-G1 and -G2 mice showed significantly reduced cholesterol efflux compared to WT or APOL1-G0 macrophages. Taken together, the evidence suggests that APOL1-G1 and -G2 risk variants impaired reverse cholesterol transport through decreased expression of cholesterol efflux transporters suggesting a possible mechanism to promote macrophage foam cell formation, driving inflammation in the glomerulus and renal interstitium.


Subject(s)
Apolipoprotein L1/metabolism , Cholesterol/metabolism , Kidney/metabolism , Macrophages/metabolism , Animals , Apolipoprotein L1/genetics , Biological Transport , Cells, Cultured , Genetic Variation , Humans , Kidney Diseases/genetics , Kidney Diseases/metabolism , Male , Mice , Mice, Transgenic , Spleen/metabolism
20.
Kidney Int ; 94(6): 1151-1159, 2018 12.
Article in English | MEDLINE | ID: mdl-30301568

ABSTRACT

Studies suggest that altered renal lipid metabolism plays a role in the pathogenesis of diabetic kidney disease and that genetic or pharmacological induction of cholesterol efflux protects from the development of diabetic kidney disease and focal segmental glomerulosclerosis (FSGS). Here we tested whether altered lipid metabolism contributes to renal failure in the Col4a3 knockout mouse model for Alport Syndrome. There was an eight-fold increase in the cholesterol content in renal cortexes of mice with Alport Syndrome. This was associated with increased glomerular lipid droplets and cholesterol crystals. Treatment of mice with Alport Syndrome with hydroxypropyl-ß-cyclodextrin (HPßCD) reduced cholesterol content in the kidneys of mice with Alport Syndrome and protected from the development of albuminuria, renal failure, inflammation and tubulointerstitial fibrosis. Cholesterol efflux and trafficking-related genes were primarily affected in mice with Alport Syndrome and were differentially regulated in the kidney cortex and isolated glomeruli. HPßCD also protected from proteinuria and mesangial expansion in a second model of non-metabolic kidney disease, adriamycin-induced nephropathy. Consistent with our experimental findings, microarray analysis confirmed dysregulation of several lipid-related genes in glomeruli isolated from kidney biopsies of patients with primary FSGS enrolled in the NEPTUNE study. Thus, lipid dysmetabolism occurs in non-metabolic glomerular disorders such as Alport Syndrome and FSGS, and HPßCD improves renal function in experimental Alport Syndrome and FSGS.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/therapeutic use , Glomerulosclerosis, Focal Segmental/drug therapy , Kidney Glomerulus/pathology , Nephritis, Hereditary/drug therapy , 2-Hydroxypropyl-beta-cyclodextrin/pharmacology , Animals , Autoantigens/genetics , Biopsy , Cholesterol/metabolism , Collagen Type IV/genetics , Doxorubicin/toxicity , Female , Glomerulosclerosis, Focal Segmental/chemically induced , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Humans , Lipid Metabolism/drug effects , Mice , Mice, Knockout , Nephritis, Hereditary/genetics , Nephritis, Hereditary/metabolism , Nephritis, Hereditary/pathology , Observational Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL