Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Angew Chem Int Ed Engl ; : e202408792, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850105

ABSTRACT

The abnormal fluctuation of temperature in vivo usually reflects the progression of inflammatory diseases. Noninvasive, real-time, and accurate monitoring and imaging of temperature variation in vivo is advantageous for guiding the early diagnosis and treatment of disease, but it remains difficult to achieve. Herein, we developed a temperature-activated near-infrared-II fluorescence (NIR-II FL) and surface-enhanced Raman scattering (SERS) nanoprobe for long-term monitoring of temperature changes in rat arthritis and timely assessment of the status of osteoarthritis. The thermosensitive polymer bearing NIR-II FL dye was grafted onto the surface of nanoporous core-satellite gold nanostructures to form the nanoprobe, wherein the nanoprobe contains NIR-II FL and Raman reference signals that are independent of temperature change. The ratiometric FL1150/FL1550 and S1528/S2226 values of the nanoprobe exhibited a reversible conversion with temperature changes. The nanoprobe accurately distinguishes the temperature variations in the inflamed joint versus the normal joint in vivo by ratiometric FL and SERS imaging, allowing for an accurate diagnosis of inflammation. Meanwhile, it can continuously monitor fluctuations in temperature over an extended period during the onset and treatment of inflammation. The tested temperature change trend could be used as an indicator for early diagnosis of inflammation and real-time evaluation of therapeutic effects.

2.
Mol Pharm ; 21(5): 2340-2350, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38546166

ABSTRACT

Uveal melanoma (UM) is the most common primary ocular malignancy in adults and has high mortality. Recurrence, metastasis, and therapeutic resistance are frequently observed in UM, but no beneficial systemic therapy is available, presenting an urgent need for developing effective therapeutic drugs. Verteporfin (VP) is a photosensitizer and a Yes-Associated Protein (YAP) inhibitor that has been used in clinical practice. However, VP's lack of tumor targetability, poor biocompatibility, and relatively low treatment efficacy hamper its application in UM management. Herein, we developed a biocompatible CD44-targeting hyaluronic acid nanoparticle (HANP) carrying VP (HANP/VP) to improve UM treatment efficacy. We found that HANP/VP showed a stronger inhibitory effect on cell proliferation than that of free VP in UM cells. Systemic delivery of HANP/VP led to targeted accumulation in the UM-tumor-bearing mouse model. Notably, HANP/VP mediated photodynamic therapy (PDT) significantly inhibited UM tumor growth after laser irradiation compared with no treatment or free VP treatment. Consistently, in HANP/VP treated tumors after laser irradiation, the tumor proliferation and YAP expression level were decreased, while the apoptotic tumor cell and CD8+ immune cell levels were elevated, contributing to effective tumor growth inhibition. Overall, the results of this preclinical study showed that HANP/VP is an effective nanomedicine for tumor treatment through PDT and inhibition of YAP in the UM tumor mouse model. Combining phototherapy and molecular-targeted therapy offers a promising approach for aggressive UM management.


Subject(s)
Cell Proliferation , Hyaluronic Acid , Melanoma , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Uveal Neoplasms , Verteporfin , Verteporfin/pharmacology , Verteporfin/therapeutic use , Animals , Photochemotherapy/methods , Uveal Neoplasms/drug therapy , Uveal Neoplasms/pathology , Mice , Melanoma/drug therapy , Melanoma/pathology , Humans , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/chemistry , Cell Line, Tumor , Nanoparticles/chemistry , Cell Proliferation/drug effects , Hyaluronic Acid/chemistry , Hyaluronan Receptors/metabolism , Apoptosis/drug effects , Xenograft Model Antitumor Assays , YAP-Signaling Proteins , Mice, Nude , Molecular Targeted Therapy/methods , Mice, Inbred BALB C , Female
3.
Nano Lett ; 24(12): 3727-3736, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38498766

ABSTRACT

The permeability of the highly selective blood-brain barrier (BBB) to anticancer drugs and the difficulties in defining deep tumor boundaries often reduce the effectiveness of glioma treatment. Thus, exploring the combination of multiple treatment modalities under the guidance of second-generation near-infrared (NIR-II) window fluorescence (FL) imaging is considered a strategic approach in glioma theranostics. Herein, a hybrid X-ray-activated nanoprodrug was developed to precisely visualize the structural features of glioma microvasculature and delineate the boundary of glioma for synergistic chemo-radiotherapy. The nanoprodrug comprised down-converted nanoparticle (DCNP) coated with X-ray sensitive poly(Se-Se/DOX-co-acrylic acid) and targeted Angiopep-2 peptide (DCNP@P(Se-DOX)@ANG). Because of its ultrasmall size and the presence of DOX, the nanoprodrug could easily cross BBB to precisely monitor and localize glioblastoma via intracranial NIR-II FL imaging and synergistically administer antiglioblastoma chemo-radiotherapy through specific X-ray-induced DOX release and radiosensitization. This study provides a novel and effective strategy for glioblastoma imaging and chemo-radiotherapy.


Subject(s)
Glioblastoma , Glioma , Nanoparticles , Nitrophenols , Humans , Glioblastoma/pathology , X-Rays , Cell Line, Tumor , Glioma/drug therapy , Nanoparticles/chemistry , Chemoradiotherapy , Doxorubicin
4.
Mol Pharm ; 21(2): 735-744, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38193393

ABSTRACT

Fibroblast activation protein (FAP) is an emerging target for cancer diagnosis. Different types of FAP inhibitor (FAPI)-based radiotracers have been developed and applied for tumor imaging. However, few FAPI tracers for single photon emission computed tomography (SPECT) imaging have been reported. SPECT imaging is less expensive and more widely distributed than positron emission tomography (PET), and thus, 99mTc-labeled FAPIs would be more available to patients in developing regions. Herein, we developed a FAPI-04-derived radiotracer, HYNIC-FAPi-04 (HFAPi), for SPECT imaging. 99mTc-HFAPi, with a radiochemical purity of >98%, was prepared using a kit formula within 30 min. The specificity of 99mTc-HFAPi for FAP was validated by a cell binding assay in vitro and SPECT/CT imaging in vivo. The binding affinity (Kd value) of 99mTc-HFAPi for human FAP and murine FAP was 4.49 and 2.07 nmol/L, respectively. SPECT/CT imaging in HT1080-hFAP tumor-bearing mice showed the specific FAP targeting ability of 99mTc-HFAPi in vivo. In U87MG tumor-bearing mice, 99mTc-HFAPi had a higher tumor uptake compared with that of HT1080-hFAP and 4T1-mFAP tumor models. Interestingly, 99mTc-HFAPi showed a relatively high uptake in some murine joints. 99mTc-HFAPi accumulated in tumor lesions with a high tumor-to-background ratio. A preliminary clinical study was also performed in breast cancer patients. Additionally, 99mTc-HFAPi exhibited an advantage over 18F-FDG in the detection of lymph node metastatic lesions in breast cancer patients, which is helpful in improving treatment strategies. In short, 99mTc-HFAPi showed excellent affinity and specificity for FAP and is a promising SPECT radiotracer for (re)staging and treatment planning of breast cancers.


Subject(s)
Breast Neoplasms , Tomography, Emission-Computed, Single-Photon , Humans , Animals , Mice , Female , Cell Line, Tumor , Tomography, Emission-Computed, Single-Photon/methods , Positron-Emission Tomography , Fibroblasts , Positron Emission Tomography Computed Tomography/methods
5.
J Environ Manage ; 351: 119689, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056329

ABSTRACT

Deep learning techniques have offered innovative and efficient tools for accurate and automated detection of sewer defects by leveraging large-scale sewer data and advanced feature learning algorithms. However, there has been a lack of thorough characterization of the geometric properties of segmented defects, let alone systematically calculate the severity level of sewer defects and quantitatively evaluate their impacts on flood conditions in hydrodynamic models. This study proposed a comprehensive framework and related metrics to accurately and automatically detect, segment, characterize, and evaluate the impacts of sewer defects on flooded nodes and volumes by integrating a DeepLabv3+-based segmentation technique, an automated geometric characterization and severity quantification module, and a GIS and SWMM-based hydrodynamic modeling. The results clearly showed in details where and how much the urban flooding was affected by the different defect types. The segmentation model achieved satisfactory detection performance, with mean pixel accuracy (MPA), mean intersection over union (MIoU), and frequency weighted intersection over union (FWIoU) of 0.99, 0.74 and 0.95, respectively. In terms of severity level quantification, there were 98%, 90%, 90% and 83% of predictions consistent with real conditions for falling off, obstacle, disjoint and leakage. It was shown that the number of surcharging manholes and total flood volume (TFV) were greatly affected by sewer defects, with over 16% increase in TFVs under all investigated rainfall events. The results addressed the impacts of sewer defects on urban flooding and demonstrated the powerful tools provided by the proposed framework for decision-making on sewer defect detection and management.


Subject(s)
Deep Learning , Floods , Hydrodynamics , China , Algorithms
6.
Nat Mater ; 22(11): 1421-1429, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37667071

ABSTRACT

X-ray-induced afterglow and radiodynamic therapy tackle the tissue penetration issue of optical imaging and phototherapy. However, inorganic nanophosphors used in this therapy have their radio afterglow dynamic function as always on, limiting the detection specificity and treatment efficacy. Here we report organic luminophores (IDPAs) with near-infrared afterglow and 1O2 production after X-ray irradiation for cancer theranostics. The in vivo radio afterglow of IDPAs is >25.0 times brighter than reported inorganic nanophosphors, whereas the radiodynamic production of 1O2 is >5.7 times higher than commercially available radio sensitizers. The modular structure of IDPAs permits the development of a smart molecular probe that only triggers its radio afterglow dynamic function in the presence of a cancer biomarker. Thus, the probe enables the ultrasensitive detection of a diminutive tumour (0.64 mm) with superb contrast (tumour-to-background ratio of 234) and tumour-specific radiotherapy for brain tumour with molecular precision at low dosage. Our work reveals the molecular guidelines towards organic radio afterglow agents and highlights new opportunities for cancer radio theranostics.


Subject(s)
Nanoparticles , Neoplasms , Humans , Molecular Probes , Precision Medicine , Nanoparticles/chemistry , Phototherapy
7.
Anal Chem ; 95(30): 11219-11226, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37471506

ABSTRACT

Fluorescence imaging requires real-time external light excitation; however, it has the drawbacks of autofluorescence and shallower penetration depth, limiting its application in deep tissue imaging. At the same time, ultrasound (US) has high spatiotemporal resolution, deep penetrability, noninvasiveness, and precise localization of lesions; thus, it can be a promising alternative to light. However, US-activated luminescence has been rarely reported. Herein, an US-activated near-infrared (NIR) chemiluminescence (CL) molecule, namely, PNCL, is designed by protoporphyrin IX as a sonosensitizer moiety and a phenoxy-dioxetane precursor containing a dicyanomethyl chromone acceptor scaffold (NCL) as the US-responsive moiety. After therapeutic US radiation (1 MHz), the singlet oxygen (1O2), as an "intermediary", oxidizes the enol-ether bond of the NCL moiety and then emits NIR light via spontaneous decomposition. Combining the deep penetrability of US with a high signal-to-background ratio of NIR CL, the designed probe PNCL successfully realizes US-activated deep tissue imaging (∼20 mm) and selectively turns on signals in specific tumor foci. Bridging US chemistry with luminescence using an "intermediary" will provide new imaging methods for accurate cancer diagnosis.


Subject(s)
Luminescence , Neoplasms , Humans , Optical Imaging/methods , Neoplasms/diagnostic imaging , Neoplasms/therapy
8.
Angew Chem Int Ed Engl ; 62(29): e202305744, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37221136

ABSTRACT

Radiotherapy (RT) is an effective and widely applied cancer treatment strategy in clinic. However, it usually suffers from radioresistance of tumor cells and severs side effects of excessive radiation dose. Therefore, it is highly significant to improve radiotherapeutic performance and monitor real-time tumor response, achieving precise and safe RT. Herein, an X-ray responsive radio-pharmaceutical molecule containing chemical radiosensitizers of diselenide and nitroimidazole (BBT-IR/Se-MN) is reported. BBT-IR/Se-MN exhibits enhanced radiotherapeutic effect via a multifaceted mechanisms and self-monitoring ROS levels in tumors during RT. Under X-ray irradiation, the diselenide produces high levels of ROS, leading to enhanced DNA damage of cancer cell. Afterwards, the nitroimidazole in the molecule inhibits the damaged DNA repair, offering a synergetic radiosensitization effect of cancer. Moreover, the probe shows low and high NIR-II fluorescence ratios in the absence and presence of ROS, which is suitable for precise and quantitative monitoring of ROS during sensitized RT. The integrated system is successfully applied for radiosensitization and the early prediction of in vitro and in vivo RT efficacy.


Subject(s)
Neoplasms , Radiation-Sensitizing Agents , Humans , Reactive Oxygen Species , Fluorescent Dyes , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Pharmaceutical Preparations , Cell Line, Tumor
9.
Mol Pharm ; 20(5): 2389-2401, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37042638

ABSTRACT

One of the main reasons why most cancer patients do not respond well to chemotherapy is that drugs cannot accumulate in tumors at an optimal dose, eventually resulting in failure to prevent cancer cell growth. To improve drug delivery efficiency, we engineered a highly efficient tumor-targeted and stroma-breaking nanocarrier by the modification of iron oxide nanoparticles (IONPs) with a tumor-targeting peptide c(RGDyK) and a hyaluronidase (HAase) on the surface. The yielding nanocomplex, c(RGDyK)-HAase-IONP, targeted the tumor by binding integrin αvß3 and went deeply into the tumors by the degradation of hyaluronic acid (HA), which was highly expressed in the tumor extracellular matrix (ECM). Good biostability and a low pH preferred drug release profile were characterized for c(RGDyK)-HAase-IONP carrying DOX in vitro. c(RGDyK)-HAase-IONP showed an improved tumor-targeting (2.5 times higher) effect after intravenous injection in the MC38 tumor-bearing mice model, as determined by whole-body fluorescence imaging compared to the non-targeted IONPs without HAase. After 5 systemic treatments, c(RGDyK)-HAase-IONP/DOX (5 mg/kg of equivalent dose of DOX) significantly inhibited MC38 tumor growth (22.1 ± 7.4 times relative to the non-treated group). Elevated apoptosis and reduced proliferation in the tumor cell were detected in the c(RGDyK)-HAase-IONP/DOX treated tumors compared to the control groups. Overall, the highly efficient targeted nanocarrier c(RGDyK)-HAase-IONP demonstrated tremendous potency for improving drug delivery and tumor therapy efficacy by targeted degradation of the dense HA barrier in the tumor ECM. We determined that such a tumor stroma-degrading nanosystem was capable of reducing tumor recurrence and drug resistance and could ultimately improve clinical tumor treatment responses.


Subject(s)
Nanoparticles , Neoplasms , Animals , Mice , Neoplasms/drug therapy , Neoplasms/pathology , Drug Delivery Systems/methods , Nanoparticles/chemistry , Extracellular Matrix/pathology , Doxorubicin
10.
Biomater Adv ; 141: 213115, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36115156

ABSTRACT

The human epidermal growth factor receptor-2-positive (HER2+) type is aggressive and has poor prognosis. Although anti-HER2 therapy alone or in combination with other treatment regimens showed significant improvement in survival outcomes, breast cancer patients are still suffering from tumor relapse and severe dose-limiting side effects. Thus, there is still an unmet challenge to develop effective therapeutic agents for HER2+ breast cancer treatment with minimized side effects. Herein, we produced a stimuli-responsive and tumor-targeted hyaluronic acid (HA) nanocomplex that combined HER2 blockade and chemotherapy for effective HER2+ breast cancer therapy. A hydrophobic NIR-II dye, IR1048, was covalently linked with HA to form a spherical HA-IR1048 nanoparticle (HINP), with Herceptin conjugated on the surface and paclitaxel (PTX) encapsulated inside. The fluorescent signals from the yielding Her-HINP/PTX are quenched originally, but a strong NIR-II signal is generated when HINP is degraded by the hyaluronidase that is overexpressed in breast tumors, thus allowing the tracking and visualization of Herceptin and PTX accumulation. Her-HINP/PTX peaked in HER2+ tumors at 24 h post injection as imaged by NIR-II fluorescent imaging. A significantly improved tumor growth inhibition effect was observed after five systemic treatments compared to single PTX (3.71 ± 0.41 times) or Herceptin (5.98 ± 0.51 times) treatment in a HER2-overexpressed breast cancer mouse model with prolonged survival. Collectively, the designed Her-HINP/PTX presents a new hyaluronidase-responsive and HER2 blockade nanoformulation that can visualize the accumulation of nanocomplexes and release drugs inside tumors for combined HER2+ breast cancer therapy with a great promise for translational study. STATEMENT OF SIGNIFICANCE: The high expressions of a protein called human epidermal growth factor receptor 2 (HER2) in breast tumors make this subtype of cancer aggressive. Currently, chemotherapy combined with a HER2 antibody, Herceptin, is a preferred approach for HER2-positive breast cancer therapy. However, these breast cancer patients still suffer from tumor relapse and severe side effects because various therapeutic agents have inherent different biodistributions, resulting in insufficient treatment effects and unfavorable normal organ uptake of these therapeutic agents. Herein, we produced a nanocomplex carrying both Herceptin and chemotherapy drug to simultaneously deliver two drugs into tumors for efficient HER2+ tumor treatment with minimized side effects, providing new insights for designing a combined therapy strategy.


Subject(s)
Breast Neoplasms , Animals , Breast Neoplasms/drug therapy , Coloring Agents/therapeutic use , Female , Humans , Hyaluronic Acid/chemistry , Hyaluronoglucosaminidase/therapeutic use , Mice , Neoplasm Recurrence, Local/drug therapy , Paclitaxel/therapeutic use , Receptor, ErbB-2 , Trastuzumab/pharmacology
11.
Small ; 18(41): e2202551, 2022 10.
Article in English | MEDLINE | ID: mdl-36089652

ABSTRACT

The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen (1 O2 ) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1 O2 in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a 1 O2 -responsive theranostic platform comprising thiophene-based small molecule (2SeFT-PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real-time monitoring PDT efficacy is developed. After laser irradiation, the Ce6-produced 1 O2 could simultaneously kill cancer and trigger 2SeFT-PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near-infrared (NIR-II, 950-1700 nm) window. Significantly, the ratiometric NIR-II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of 1 O2 and O2 consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this 1 O2 activated NIR-II CL/FL probe provides an efficient ratiometric optical imaging platform for real-time evaluating PDT effect and precisely guiding the PDT process in vivo.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Cell Line, Tumor , Micelles , Neoplasms/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Singlet Oxygen , Thiophenes
12.
Anal Chem ; 94(29): 10540-10548, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35819004

ABSTRACT

Inorganic nanoprobes have attracted increasing attention in the biomedical field due to their versatile functionalities and excellent optical properties. However, conventional nanoprobes have a relatively low retention time in the tumor and are mostly applied in the first near-infrared window (NIR-I, 650-950 nm), limiting their applications in accurate and deep tissue imaging. Herein, we develop a Janus nanoprobe, which can undergo tumor microenvironment (TME)-induced aggregation, hence, promoting tumor retention time and providing photoacoustic (PA) imaging in the second NIR (NIR-II, 950-1700 nm) window, and enhancing photodynamic therapy (PDT) effect. Ternary Janus nanoprobe is composed of gold nanorod (AuNR) coated with manganese dioxide (MnO2) and photosensitizer pyropheophorbide-a (Ppa) on two ends of AuNR, respectively, named as MnO2-AuNR-Ppa. In the tumor, MnO2 could be etched by glutathione (GSH) to release Mn2+, which is coordinated with multiple Ppa molecules to induce in situ aggregation of AuNRs. The aggregation of AuNR effectively improves the NIR-II photoacoustic signal in vivo. Moreover, the increased retention time of nanoprobes and GSH reduction in the tumor greatly improve the PDT effect. We believe that this work will inspire further research on specific in situ aggregation of inorganic nanoparticles.


Subject(s)
Nanoparticles , Neoplasms , Photoacoustic Techniques , Photochemotherapy , Glutathione , Humans , Manganese Compounds , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Oxides , Photoacoustic Techniques/methods , Tumor Microenvironment
13.
ACS Nano ; 16(5): 7947-7960, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35536639

ABSTRACT

Synthetic micro/nanomotors have great potential in deep tissue imaging and in vivo drug delivery because of their active motion ability. However, applying nanomotors with a size less than 100 nm to in vivo imaging and therapy is one of the core changes in this field. Herein, a nanosized hydrogen peroxide (H2O2)-driven Janus gold nanorod-platinum (JAuNR-Pt) nanomotor is developed for enhancing the second near-infrared region (NIR-II) photoacoustic (PA) imaging of deep tissues of tumors and for effective tumor treatment. The JAuNR-Pt nanomotor is prepared by depositing platinum (Pt) on one end of a gold nanorod with varying proportions of Pt shell coverage, including 10%, 25%, 50%, 75%, and 100%. The JAuNR-Pt nanomotor with Pt shell coverage proportions of 50% exhibits the highest diffusion coefficient (De), and it can rapidly move in the presence of H2O2. The self-propulsion of JAuNR-Pt nanomotor enhances cellular uptake, accelerates lysosomal escape, and facilitates continuous release of cytotoxic Pt2+ ions to the nucleus, causing DNA damage and cell apoptosis. The JAuNR-Pt nanomotor presents deep penetration and enhanced accumulation in tumors as well as high tumor treatment effect. Therefore, this work displays deep tumor imaging and an excellent antitumor effect, providing an effective tool for accurate diagnosis and treatment of diseases.


Subject(s)
Neoplasms , Photoacoustic Techniques , Humans , Platinum , Photoacoustic Techniques/methods , Hydrogen Peroxide , Gold , Neoplasms/diagnostic imaging , Neoplasms/drug therapy
14.
ACS Appl Bio Mater ; 5(2): 711-722, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35044163

ABSTRACT

Nanotheranostics with integrated imaging functions can help monitor nanoparticle accumulation in tumors, thus achieving synergism and higher therapeutic accuracy in cancer therapy. However, it remains challenging to monitor the release of therapeutic drugs in real time from a nanoparticulate drug delivery system (nano-DDS) in the body. Herein, we developed a nano-DDS for fluorescence imaging in the second near-infrared window (NIR-II) region, which can be used for monitoring the responsive release of drugs and cancer-targeted combined photodynamic and chemotherapy. There is a linear correlation between the cumulative release of the drug and the NIR-II fluorescence intensity. Moreover, hyaluronidase/glutathione dual-response RGD-SS-DOX/Ce6@HA-IR-1061 (RSSDCHI) exhibited a higher tumor-to-normal-tissue ratio in NIR-II fluorescence imaging and enhanced antitumor efficacy in vivo. This makes it possible to visualize drug release at the cellular level by the nanocomposites and to predict the treatment effect according to the NIR-II fluorescence intensity in the tumor site, serving as a promising nanoplatform for precision nanomedicine.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Coloring Agents , Drug Delivery Systems/methods , Drug Liberation , Humans , Nanoparticles/therapeutic use , Neoplasms/diagnostic imaging , Photochemotherapy/methods
15.
Small ; 18(5): e2105160, 2022 02.
Article in English | MEDLINE | ID: mdl-34821027

ABSTRACT

Heteroatom interaction of atomically thin nanomaterials enables the improvement of electronic transfer, band structure, and optical properties. Black phosphorus quantum dots (BP QDs) are considered to be candidate diagnostic and/or therapeutic agents due to their innate biocompatibility and exceptional photochemical effects. However, BP QDs are not competitive regarding second near-infrared (NIR-II) window medical diagnosis and X-ray induced phototherapy. Here, an Nd3+ ion coordinated BP QD (BPNd) is synthesized with the aim to sufficiently improve its performances in NIR-II fluorescence imaging and X-ray induced photodynamic therapy, benefitting from the retrievable NIR/X-ray optoelectronic switching effects between BP QD and Nd3+ ion. Given its ultrasmall size and efficient cargo loading capacity, BPNd can easily cross the blood-brain barrier to precisely monitor the growth of glioblastoma through intracranial NIR-II fluorescence imaging and impede its progression by specific X-ray induced, synergistic photodynamic chemotherapy.


Subject(s)
Glioblastoma , Quantum Dots , Glioblastoma/diagnostic imaging , Humans , Neodymium , Phosphorus/chemistry , Quantum Dots/chemistry , X-Rays
16.
Anal Chem ; 93(46): 15279-15287, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34748309

ABSTRACT

Currently, drug-induced liver injury (DILI) has become a huge concern for the majority of modern medicine, whereas the diagnosis of DILI is still in its infancy due to the lack of appropriate methods. Herein, based on the fact that nitric oxide (NO) has been recognized as an early unifying, direct, and vital biomarker for DILI, we rationally designed and developed a NO-responsive ratiometric fluorescent nanoprobe DCNP@MPS@IR NO to quantitatively detect NO and monitor DILI in the second near-infrared (NIR-II) window. In the presence of NO, due to the conversion of IR NO into IR RA and excellent stability of the downconversion nanoparticle (DCNP), DCNP@MPS@IR NO could present a "Turn-On" fluorescence signal at 1050 nm under 808 nm excitation (F1050 Em, 808 Ex) and an "Always-On" fluorescence signal at 1550 nm under 980 nm excitation (F1550 Em, 980 Ex), which led to a "Turn-On" ratiometric fluorescence signal F1050 Em, 808 Ex/F1550 Em, 980 Ex. DCNP@MPS@IR NO was then successfully applied in vitro to selectively detect NO, at a linear concentration range of 0-100 µM with a limit of detection of 0.61 µM. In vivo results revealed that DCNP@MPS@IR was available to quantify NO in acetaminophen (APAP)-induced liver injury, monitor DILI, and screen an antidote for APAP through NIR-II ratiometric fluorescence imaging. We envision that our nanoprobe DCNP@MPS@IR NO might become a really useful biotechnology tool for visualizing and early diagnosis of drug-induced liver injury and revealing the mechanism of drug hepatotoxicity in the clinic in the near future.


Subject(s)
Chemical and Drug Induced Liver Injury , Nanoparticles , Fluorescence , Fluorescent Dyes , Humans , Nanoparticles/toxicity , Nitric Oxide
17.
Anal Chem ; 93(41): 13893-13903, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34609146

ABSTRACT

NIR-II fluorescent nanoprobes based on inorganic materials, including rare-earth-doped nanoparticles, single-walled carbon nanotubes, CdS quantum dots (QDs), gold nanoclusters, etc., have gained growing interest in bioimaging applications. However, these nanoprobes are usually not biodegradable and lack therapeutic functions. Herein, we developed novel NIR-II fluorescence (FL) imaging and therapeutic nanoprobes based on black phosphorus QDs (BPQDs), which exhibited excellent biodegradability and high tunability of size-dependent optical properties. By adjusting the size of nanoparticles, BPQDs can specifically accumulate in the kidney or liver. Importantly, a low dosage of BPQDs can effectively protect tissues from reactive oxygen species (ROS)-mediated damage in acute kidney and liver injury, which was real-time monitored by responsive NIR-II fluorescence imaging. Overall, we developed novel NIR-II emitting and therapeutic BPQDs with excellent biodegradability vivo, providing a promising candidate for NIR-II FL imaging and ROS scavenging.


Subject(s)
Nanotubes, Carbon , Quantum Dots , Kidney/diagnostic imaging , Liver/diagnostic imaging , Optical Imaging
18.
Anal Chem ; 93(27): 9356-9363, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34192871

ABSTRACT

As key characteristic molecules, several H2S-activated probes have been explored for colon cancer studies. However, a few ratiometric fluorescence (FL) probes with NIR-II emissions have been reported for the quantitative detection of H2S in colon cancer in vivo. Here, we developed an in situ H2S-activatable ratiometric nanoprobe with two NIR-II emission signals for the detection of H2S and intelligently lighting up colon cancer. The nanoprobe comprised a down conversion nanoparticle (DCNP), which emitted NIR-II FL at 1550 nm on irradiation with a 980 nm laser (F1550Em, 980Ex). Further, human serum albumin (HSA) was combined with Ag+ on the surface of DCNP to form a DCNP@HSA-Ag+ nanoprobe. In the presence of H2S, Ag2S quantum dots (QDs) were formed in coated HSA, which emitted FL at approximately 1050 nm on irradiation with an 808 nm laser (F1050Em, 808Ex) through an H2S-induced chemical reaction between H2S and Ag+; however, the FL signal of DCNP was stable at 1550 nm (F1550Em, 980Ex), generating a H2S concentration-dependent ratiometric F1050Em, 808Ex/F1550Em, 980Ex signal. The NIR-II ratiometric nanoprobe was successfully used for the accurate quantitative detection of H2S and the detection of the precise location of colon cancer through an endogenous H2S-induced in situ reduction reaction to form Ag2S QDs. Thus, these findings provide a new strategy for the specific detection of targeted molecules and diagnosis of disease based on the in situ-activatable NIR-II ratiometric FL nanoprobe.


Subject(s)
Colonic Neoplasms , Nanoparticles , Quantum Dots , Fluorescence , Humans , Lasers
19.
Small ; 17(26): e2008061, 2021 07.
Article in English | MEDLINE | ID: mdl-34081397

ABSTRACT

Wilson's disease (WD) is a rare inherited disorder of copper metabolism with pathological copper hyperaccumulation in some vital organs. However, the clinical diagnosis technique of WD is complicated, aggressive, and time-consuming. In this work, a novel ratiometric photoacoustic (PA) imaging nanoprobe in the NIR-II window is developed to achieve noninvasive, rapid, and accurate Cu2+ quantitative detection in vitro and in vivo. The nanoprobe consists of Cu2+ -responsive IR970 dye and a nonresponsive palladium-coated gold nanorod (AuNR-Pd), achieving a concentration-dependent ratiometric PA970 /PA1260 signal change. The urinary Cu2+ content is detectable within minutes down to a detection limit of 76 × 10-9 m. This report acquisition time is several orders of magnitude shorter than those of existing detection approaches requiring complex procedure. Moreover, utilizing the ratiometric PA nanoprobe, PA imaging enables biopsy-free measurement of the liver Cu2+ content and visualization of the liver Cu2+ biodistribution of WD patient, which avoid the body injury during the clinical Cu2+ test using liver biopsy method. The NIR-II ratiometric PA detection method is simple and noninvasive with super precision, celerity, and simplification, which holds great promise as an alternative to liver biopsy for clinical diagnosis of WD.


Subject(s)
Hepatolenticular Degeneration , Biopsy , Copper , Gold , Hepatolenticular Degeneration/diagnostic imaging , Humans , Tissue Distribution
20.
Angew Chem Int Ed Engl ; 60(32): 17647-17653, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34041827

ABSTRACT

Controlling the structural order of nanoparticles (NPs), morphology, and composition is of paramount significance in tailoring the physical properties of nanoassembly. However, the commonly reported symmetrical nanocomposites often suffer an interference or sacrifice of the photophysical properties of the original components. To address this challenge, we developed a novel type of organic-inorganic Janus nanocomposite (JNCP) with an asymmetric architecture, offering unique features such as the precisely controlled localization of components, combined modular optical properties, and independent stimuli. As a proof of concept, JNCPs were prepared by incorporating two photoacoustic (PA) imaging agents, namely an organic semiconducting dye and responsive gold nanoparticles (AuNP) assembly in separate compartments of JNCP. Theoretical simulation results confirmed that the formation mechanism of JNCPs arises from the entropy equilibrium in the system. The AuNP assembly generated a PA images with the variation of pH, while the semiconducting molecule served as an internal PA standard agent, leading to ratiometric PA imaging of pH. JNCP based probe holds great potential for real-time and accurate detection of diverse biological targets in living systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...