Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Diabetologia ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819467

ABSTRACT

AIMS/HYPOTHESIS: Mutations in Isl1, encoding the insulin enhancer-binding protein islet-1 (ISL1), may contribute to attenuated insulin secretion in type 2 diabetes mellitus. We made an Isl1E283D mouse model to investigate the disease-causing mechanism of diabetes mellitus. METHODS: The ISL1E283D mutation (c. 849A>T) was identified by whole exome sequencing on an early-onset type 2 diabetes family and then the Isl1E283D knockin (KI) mouse model was created and an IPGTT and IPITT were conducted. Glucose-stimulated insulin secretion (GSIS), expression of Ins2 and other ISL1 target genes and interacting proteins were evaluated in isolated pancreas islets. Transcriptional activity of Isl1E283D was evaluated by cell-based luciferase reporter assay and electrophoretic mobility shift assay, and the expression levels of Ins2 driven by Isl1 wild-type (Isl1WT) and Isl1E283D mutation in rat INS-1 cells were determined by RT-PCR and western blotting. RESULTS: Impaired GSIS and elevated glucose level were observed in Isl1E283D KI mice while expression of Ins2 and other ISL1 target genes Mafa, Pdx1, Slc2a2 and the interacting protein NeuroD1 were downregulated in isolated islets. Transcriptional activity of the Isl1E283D mutation for Ins2 was reduced by 59.3%, and resulted in a marked downregulation of Ins2 expression when it was overexpressed in INS-1 cells, while overexpression of Isl1WT led to an upregulation of Ins2 expression. CONCLUSIONS/INTERPRETATION: Isl1E283D mutation reduces insulin expression and secretion by regulating insulin and other target genes, as well as its interacting proteins such as NeuroD1, leading to the development of glucose intolerance in the KI mice, which recapitulated the human diabetic phenotype. This study identified and highlighted the Isl1E283D mutation as a novel causative factor for type 2 diabetes, and suggested that targeting transcription factor ISL1 could offer an innovative avenue for the precise treatment of human type 2 diabetes.

2.
Cancer Lett ; 588: 216798, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38467181

ABSTRACT

Immune checkpoint inhibitors (ICIs) offer new options for the treatment of patients with solid cancers worldwide. The majority of colorectal cancers (CRC) are proficient in mismatch-repair (pMMR) genes, harboring fewer tumor antigens and are insensitive to ICIs. These tumors are often found to be immune-deserted. We hypothesized that forcing immune cell infiltration into the tumor microenvironment followed by immune ignition by PD1 blockade may initiate a positive immune cycle that can boost antitumor immunity. Bioinformatics using a public database suggested that IFNγ was a key indicator of immune status and prognosis in CRC. Intratumoral administration of IFNγ increased immune cells infiltration into the tumor, but induced PD-L1 expression. A combined treatment strategy using IFNγ and anti-PD-1 antibody significantly increased T cell killing of tumor cells in vitro and showed synergistic inhibition of tumor growth in a mouse model of CRC. CyTOF found drastic changes in the immune microenvironment upon combined immunotherapy. Treatment with IFNγ and anti-PD1 antibody in CT26 tumors significantly increased infiltration of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). IFNγ had a more pronounced effect in decreasing intratumoral M2-like macrophages, while PD1 blockade increased the population of CD8+Ly6C + T cells in the tumor microenvironment, creating a more pro-inflammatory microenvironment. Additionally, PD1 induced increased expression of lymphocyte activating 3 (LAG3) in a significant fraction of CD8+ T cells and Treg cells, indicating potential drug resistance and feedback mechanisms. In conclusion, our work provides preclinical data for the Combined immunotherapy of CRC using intratumoral delivery of IFNγ and systemic anti-PD1 monoclonoal antibody.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Animals , Mice , Humans , Interferon-gamma/metabolism , Injections, Intralesional , Immunotherapy , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Tumor Microenvironment , Cell Line, Tumor
3.
Front Immunol ; 15: 1291938, 2024.
Article in English | MEDLINE | ID: mdl-38312843

ABSTRACT

Introduction: To better understand the role of immune escape and cancer-associated fibroblasts (CAFs) in colon adenocarcinoma (COAD), an integrative analysis of the tumor microenvironment was performed using a set of 12 immune- and CAF-related genes (ICRGs). Methods: Univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were used to establish a prognostic signature based on the expression of these 12 genes (S1PR5, AEN, IL20RB, FGF9, OSBPL1A, HSF4, PCAT6, FABP4, KIF15, ZNF792, CD1B and GLP2R). This signature was validated in both internal and external cohorts and was found to have a higher C-index than previous COAD signatures, confirming its robustness and reliability. To make use of this signature in clinical settings, a nomogram incorporating ICRG signatures and key clinical parameters, such as age and T stage, was developed. Finally, the role of S1PR5 in the immune response of COAD was validated through in vitro cytotoxicity experiments. Results: The developed nomogram exhibited slightly improved predictive accuracy compared to the ICRG signature alone, as indicated by the areas under the receiver operating characteristic curves (AUC, nomogram:0.838; ICRGs:0.807). The study also evaluated the relationships between risk scores (RS) based on the expression of the ICRGs and other key immunotherapy variables, including immune checkpoint expression, immunophenoscore (IPS), and microsatellite instability (MSI). Integration of these variables led to more precise prediction of treatment efficacy, enabling personalized immunotherapy for COAD patients. Knocking down S1PR5 can enhance the efficacy of PD-1 monoclonal antibody, promoting the cytotoxicity of T cells against HCT116 cells ((p<0.05). Discussion: These findings indicate that the ICRG signature may be a valuable tool for predicting prognostic risk, evaluating the efficacy of immunotherapy, and tailoring personalized treatment options for patients with COAD.


Subject(s)
Adenocarcinoma , Cancer-Associated Fibroblasts , Colonic Neoplasms , Humans , Prognosis , Adenocarcinoma/genetics , Reproducibility of Results , Colonic Neoplasms/genetics , Tumor Microenvironment , Kinesins
4.
Article in English | MEDLINE | ID: mdl-37768477

ABSTRACT

Diabetic nephropathy (DN) is a common clinical syndrome in diabetic patients. Functional characterization of non-coding (ncRNAs) involved in the progression of DN can provide insights into the diagnosis and therapeutic management of DN. Human kidney proximal tubular epithelial cells (HK-2) were challenged by high glucose (HG, 50 mM) as a cell model of DN. The expression level of long non-coding RNA (lncRNA) ZFAS1 was quantified by qRT-PCR. The proteins and cytokines related to fibrosis and scortosis in DN (NLRP3, GSDMD-N, IL-1ß and Caspase 1, fibronectin, collagen I, collagen III, IL-1ß, and IL-18) were examined by western blot or ELISA. RNA precipitation and luciferase reporter activity experiments were conducted to assess the molecular associations. ZFAS1 and SGK1 were highly induced in HK-2 cells challenged with HG, while miR-525-5p downregulated upon HG treatment. ZFAS1 knockdown attenuated HG-induced fibrosis and scortosis in HK-2 cells by reducing the levels of NLRP3, GSDMD-N, Caspase 1, fibronectin, collagen I/III, IL-1ß, and IL-18. Mechanically, ZFAS1 knockdown protected HK-2 cells from HG-induced injury by upregulating miR-525-5p and repressing SGK1 expression. Overall, our results suggest that knocking down ZFAS1 may be formulated as a protective strategy in ameliorating DN progression through regulating miR-525-5p/SGK1 pathway. Targeting ZFAS1 could be further explored as a potential approach for the management of DN.

5.
Arch Biochem Biophys ; 745: 109713, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37543352

ABSTRACT

Hashimoto's thyroiditis (HT) is a type of autoimmune disorder with a complex interplay between immune disorder and oxidative stress (OS). This research aimed to discover biomarkers and potential treatment targets associated with immune and OS dysregulation in HT through integrated bioinformatics analysis and clinical validations. Differential gene expression analysis of GSE138198 dataset from the GEO database identified 1490 differentially expressed genes (DEGs) in HT, including 883 upregulated and 607 downregulated genes. Weighted gene co-expression network analysis explored module genes associated with HT. Overlapping the differentially expressed module genes with immune-related and OS-related genes identified eight differentially expressed module genes associated with immune and OS (DEIOGs) in HT. Protein-protein interaction network analysis identified five hub genes (TNFAIP3, FOS, PTK2B, STAT1, and MMP9). We confirmed four hub genes (TNFAIP3, PTK2B, STAT1 and MMP9) in GSE29315 dataset and clinical thyroid samples, which showed high diagnostic accuracy (AUC >0.7) for HT. The expression of these four genes was positively correlated with serum thyroid peroxidase antibody, thyroglobulin antibody levels, and inflammatory infiltration scores in clinical thyroid samples. Immune profiling revealed distinct profiles in HT, such as B cells memory, monocytes and macrophages. Additionally, all hub genes were inversely associated with monocytes. Further, miRNA-mRNA network analysis was conducted, and a regulatory network comprising four hub genes, 238 miRNAs and 32 TFs was established. These findings suggest that immune cells play a crucial role in the development of HT, and the hub genes TNFAIP3, PTK2B, STAT1, and MMP9 may be key players in HT through immune- and OS-related signaling pathways. Our results may provide valuable insights into the pathogenesis and therapeutic monitoring of HT.


Subject(s)
Matrix Metalloproteinase 9 , Thyroiditis , Humans , Biomarkers , Computational Biology , Gene Expression Profiling
6.
Appl Biochem Biotechnol ; 195(12): 7652-7667, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37079269

ABSTRACT

Diabetic nephropathy (DN) represents a major diabetes-related complication, which could undermine renal function. CircCOL1A2 has been previously reported to show abnormal expression during DN. However, its functional role in the progression of DN, as well as the potential molecular mechanisms, remains unclear. The present work examined the expression of circCOL1A2 in the plasma of DN patients, and employed high glucose (HG)-challenged HK-2 cells as the in vitro cell model of hyperglycemia (HG)-induced DN. CircCOL1A2 was silenced using siRNA in HK-2 cells to clarify the functional engagement of circCOL1A2 in HG-induced DN. We examined the roles of circCOL1A2 in regulating oxidative stress by measuring reactive oxygen species (ROS), lipid peroxidation, and superoxide dismutase (SOD) levels. Besides, the effects of circCOL1A2 silencing on pyroptosis were investigated by RT-qPCR, western blot (WB), and ELISA assays. StarBase (version 2.0) was used to identify the downstream effector of circCOL1A2, and their interactions were further verified through dual-luciferase reporter analysis, RNA pull-down assays, and RNA immunoprecipitation (RIP) assay. CircCOL1A2 was highly expressed in DN patients and HG-induced HK-2 cells. Knocking down circCOL1A2 alleviated oxidative stress and pyroptosis upon HG treatment. In addition, we demonstrated that circCOL1A2 knockdown could promote miR-424-5p expression while inhibiting Serum/Glucocorticoid Regulated Kinase 1 (SGK1) level. Furthermore, miR-424-5p inhibitor or SGK1 overexpression impaired the effects of circCOL1A2 knockdown on HG-induced oxidative stress and pyroptosis. Hence, our results demonstrated that the circCOL1A2 mediates HG-exposed pyroptosis and oxidative stress through modulating miR-424-5p/SGK1 axis in diabetic nephropathy, indicating that silencing circCOL1A2 is a potential intervention strategy for DN management.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , MicroRNAs , Humans , Collagen Type I , Diabetic Nephropathies/genetics , Glucocorticoids , Glucose/toxicity , MicroRNAs/genetics , Oxidative Stress , Pyroptosis/genetics , RNA, Circular/genetics
7.
J Oncol ; 2022: 3425841, 2022.
Article in English | MEDLINE | ID: mdl-36545125

ABSTRACT

Lactate is critical in modeling tumor microenvironment causing chemotherapy resistance; however, the role of lactate in tyrosine kinase inhibitor (TKI) resistance has not been fully known. The aim of this study was to evaluate whether lactate could mediate TKI resistance through GPR81 and MCT1 in non-small-cell lung cancer (NSCLC). Here, we showed that lactate enhanced the cell viability and restrained erlotinib-induced apoptosis in PC9 and HCC827 cells. GPR81 and AKT expression were significantly increased with the addition of lactate, and siGPR81 reduced AKT expression resulting in a raised apoptosis rate with erlotinib treatment. Furthermore, we found that lactate also promoted MCT1 exposure, and inhibiting MCT1 with AZD3965 markedly impaired the glycolytic capacity. A significant increase of GPR81 and MCT1 expression was observed in insensitive tissues compared with sensitive ones by immunostaining in NSCLC patients. Our results indicate that lactate adopts dual strategies to promote TKI resistance in NSCLC, not only activating AKT signaling by GPR81, but also giving energy supply through MCT1-mediated input. Targeting GPR81 and MCT1 may provide new therapeutic modalities for TKI resistance in NSCLC.

8.
Front Endocrinol (Lausanne) ; 13: 890332, 2022.
Article in English | MEDLINE | ID: mdl-35712241

ABSTRACT

Purpose: To examine the association of serum Ism1, a new adipokine that can regulate glucose uptake, with type 2 diabetes (T2D) in a Chinese population. Considering high prevalence of Nonalcoholic Fatty Liver Disease in patients with type 2 diabetes and the regulating role of Ism1 on glucose uptake of peripheral tissues, we further explored the association between Ism1 and diabetes-associated nonalcoholic fatty liver disease. Methods: A total of 120 newly diagnosed T2D patients and 60 control subjects with normal glucose were recruited in the case-control study. Serum Ism1 concentrations were determined by ELISA. Multivariate logistic regression analysis was used to evaluate the independent association of serum Ism1 concentration with the risk of T2D. The 120 newly diagnosed T2D patients were divided into uncomplicated T2D group and diabetes-associated NAFLD group according to the FLI score. Results: The Ism1 level of normoglycemic controls was higher than that of T2D patients (3.91 ± 0.24 ng/ml vs 3.01 ± 0.16 ng/ml, P=0.001). Based on quartile analysis of Ism1 level, the proportion of high circulating Ism1 levels in the control group increased while T2D group decreased, and the distribution difference was statistically significant (P=0.015). Logistic regression analysis indicated that the serum Ism1 level was an independent protective factor of type 2 diabetes (OR=0.69, 95%CI: 0.54-0.89). The decrease of Ism1 level did not increase the risk of non-alcoholic fatty liver disease in diabetic patients by Binary logistic regression analysis (OR=1.08, 95% CI: 0.69-1.69). Conclusions: The increase of serum Ism1 was associated with a decreased risk of diabetes, and it did not reduce the risk of non-alcoholic fatty liver disease in diabetic patients.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose/metabolism , Non-alcoholic Fatty Liver Disease , Case-Control Studies , Glucose/chemistry , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Risk Factors
9.
BMJ Open ; 12(6): e060238, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35768116

ABSTRACT

OBJECTIVE: To identify the risk factors for diabetic kidney disease (DKD) development, especially the difference between patients with different courses. PATIENTS AND METHODS: 791 patients were considered to be eligible and were enrolled in the cross-sectional study from Shanghai Tongren Hospital Inpatient Department. 36 variables were initially screened by univariate analysis. The risk factors affecting progression of DKD were determined by logistics regression analysis. Subgroups were grouped according to the course of diabetes disease, and multivariate logistics regression analysis was performed to find out the different risk factors in two subgroups. Finally, the receiver operating characteristics curve is used to verify the result. RESULTS: The logistic regression model indicated age (OR=1.020, p=0.017, 95% CI 1.004 to 1.040), systolic blood pressure (OR=1.013, p=0.006, 95% CI 1.004 to 1.022), waist circumference (OR=1.021, p=0.015, 95% CI 1.004 to 1.038), white blood cells (WBC, OR=1.185, p=0.001, 95% CI 1.085 to 1.295) and triglycerides (TG, OR=1.110, p=0.047, 95% CI 1.001 to 1.230) were risk factors for DKD, while free triiodothyronine (fT3, OR=0.711, p=0.011, 95% CI 0.547 to 0.926) was a protective factor for DKD in patients with type 2 diabetes mellitus (T2DM). Subgroup analysis revealed that in patients with a short duration of diabetes (<8 years), WBC (OR=1.306, p<0.001, 95% CI 1.157 to 1.475) and TG (OR=1.188, p=0.033, 95% CI 1.014 to 1.393) were risk factors for DKD,fT3 (OR=0.544, p=0.002, 95% CI 0.367 to 0.804) was a protective factor for DKD; whereas for patients with disease course more than 8 years, age (OR=1.026, Pp=0.012, 95%CI=95% CI[ 1.006- to 1.048]) was identified as the only risk factor for DKD and fT3 (OR=0.036, Pp=0.017, 95%CI=95% CI[ 0.439- to 0.922]) was a protective factor for DKD. CONCLUSION: The focus of attention should especially be on patients with a prolonged course of T2DM, and those with comorbid hypertension and hypertriglyceridaemia waist phenotype. More potential clinical indexes such as thyroid function and inflammatory indicators might be considered as early warning factors for DKD in T2DM. Women should pay attention to controlling inflammation and TGs, and men should strictly control blood pressure. Avoiding abdominal obesity in both men and women will bring great benefits.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , China/epidemiology , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/etiology , Female , Humans , Risk Factors
10.
BMC Nephrol ; 23(1): 89, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35246069

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes, which can lead to renal failure and fatality. miRNAs are an important class of endogenous non-coding RNAs implicated in a wide range of biological processes and pathological conditions. This study aims to investigate the potential functional roles of miR-543 in DN and its underlying mechanisms. METHODS: qRT-PCR was performed to detect the expression levels of miR-543 and TSPAN8 in kidney tissues of mice with DN. Western blot (WB) was used to measure the protein levels. CCK8 assay was employed to evaluate the proliferation of HK2 cells. Dual luciferase reporter assay was conducted to verify the functional interaction between miR-543 and TSpan8. RESULTS: The downregulation of miR-543 and upregulation of TSPAN8 were observed in kidney tissues of mice with DN. miR-543 mimic significantly decreased cell proliferation and autophagy in high-glucose (HG)-induced HK2 cells, and promoted cell fibrosis. We further identified a putative binding site between miR-543 and TSPAN8, which was validated by Dual luciferase reporter assay. The treatment of miR-543 mimic and miR-543 inhibitor could reduce or increase TSPAN8 protein level respectively. We further showed that the overexpression of TSPAN8 could attenuate HG-induced cell injury by reducing fibrosis and increase autophagy. The effects of miR-543 mimic in proliferation, fibrosis, and autophagy were rescued by TSPAN8 overexpression. CONCLUSIONS: Our study indicate that miR-543 mediates high-glucose induced DN via targeting TSPAN8. Interfering miR-543/TSPAN8 axis could serve as potential approach to ameliorate DN.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , MicroRNAs , Animals , Autophagy/genetics , Diabetic Nephropathies/pathology , Female , Fibrosis , Glucose/toxicity , Humans , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Tetraspanins/genetics
11.
Mol Cell Biochem ; 477(5): 1629-1643, 2022 May.
Article in English | MEDLINE | ID: mdl-35229243

ABSTRACT

Precise differentiation of glucokinase (GCK) monogenic diabetes from gestational diabetes mellitus (GDM) is critical for accurate management of the pregnancy outcome. We screened GCK-MODY complicating pregnancies in Chinese GDM patients, explored the pathogenesis of novel GCK mutations, and evaluated the patients' pregnancy outcome and management. The GCK gene from 411 GDM patients was screened with PCR-direct sequencing and multiplex ligation-dependent probe amplification (MLPA) and 15 GCK mutations were identified. We also retrospectively analyzed a total of 65 pregnancies from 21 GCK-MODY families, wherein 41 were from 15 maternal families and 24 were from six paternal families. Bioinformatic analysis and biochemical functional study were conducted to identify novel GCK mutations. In total, we identified 21 GCK mutations: 15 from the 411 GDM patients and six from 24 fathers. Of th Asp78Asn (GAC → AAC), Met87Arg (ATG → AGG), Leu451Val (CTT → GTT), Leu451Pro (CTG → CCG) and 1019 + 20G > A e mutations, five, i.e., were novel and deleterious, with markedly decreased enzyme activity and thermal stability. The unaffected offspring of GCK mutation-affected mothers were heavier than affected offspring (p < 0.001). Of 21 insulin-treated affected mothers, 10 had maternal hypoglycemia (47.6%) and seven had perinatal complications (33.3%), and the affected offspring of the insulin-treated affected mothers had significantly lower birth weights than that of the 20 diet-control affected mothers (p = 0.031). In this study, the prevalence of GCK-MODY complicating pregnancy in Chinese GDM patients was 3.6% (15/411). The defective GCK may contribute to the hyperglycemia in GCK-MODY. Insulin therapy is not beneficial for GCK-MODY complicating pregnancy and therefore should not be recommended.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes, Gestational , Pregnancy in Diabetics , China , Diabetes Mellitus, Type 2/genetics , Diabetes, Gestational/genetics , Female , Glucokinase/genetics , Humans , Insulin/genetics , Mutation , Pregnancy , Pregnancy Outcome , Pregnancy in Diabetics/epidemiology , Pregnancy in Diabetics/genetics , Pregnancy in Diabetics/therapy , Retrospective Studies
12.
J Cell Mol Med ; 26(6): 1799-1805, 2022 03.
Article in English | MEDLINE | ID: mdl-33615661

ABSTRACT

Circular RNAs play essential roles in the development of various human diseases. However, how circRNAs are involved in diabetic nephropathy (DN) are not fully understood. Our study aimed to investigate the effects of circRNA circEIF4G2 on DN. Experiments were performed in the db/db mouse model of type 2 diabetes and NRK-52E cells. We found that circEIF4G2 was significantly up-regulated in the kidneys of db/db mice and NRK-52E cells stimulated by high glucose. circEIF4G2 knockdown inhibited the expressions of TGF-ß1, Collagen I and Fibronectin in high glucose-stimulated NRK-52E cells, which could be rescued by miR-218 inhibitor. Knockdown of SERBP1 reduced the expression of TGF-ß1, Collagen I and Fibronectin in HG-stimulated NRK-52E cells. In summary, our findings suggested that circEIF4G2 promotes renal tubular epithelial cell fibrosis via the miR-218/SERBP1 pathway, presenting a novel insight for DN treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , MicroRNAs , Animals , Collagen Type I/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Female , Fibronectins/genetics , Fibrosis , Glucose/toxicity , Humans , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , Transforming Growth Factor beta1/metabolism
13.
Front Endocrinol (Lausanne) ; 13: 1097612, 2022.
Article in English | MEDLINE | ID: mdl-36686441

ABSTRACT

Aims: As metabolic remodeling is a pathological characteristic in type 2 diabetes (T2D), we investigate the roles of newly developed long-acting glucagon-like peptide-1 receptor agonists (GLP-1RAs) such as dulaglutide and liraglutide on metabolic remodeling in patients with recent-onset T2D. Methods: We recruited 52 cases of T2D and 28 control cases in this study. In the patient with T2D, 39 cases received treatment with dulaglutide and 13 cases received treatment with liraglutide. Using untargeted metabolomics analysis with broad-spectrum LC-MS, we tracked serum metabolic changes of the patients from the beginning to the end of follow-up (12th week). Results: We identified 198 metabolites that were differentially expressed in the patients with T2D, compared to the control group, in which 23 metabolites were significantly associated with fasting plasma glucose. Compared to pre-treatment, a total of 46 and 45 differentially regulated metabolites were identified after treatments with dulaglutide and liraglutide, respectively, in which the most differentially regulated metabolites belong to glycerophospholipids. Furthermore, a longitudinal integration analysis concurrent with diabetes case-control status revealed that metabolic pathways, such as the insulin resistance pathway and type 2 diabetes mellitus, were enriched after dulaglutide and liraglutide treatments. Proteins such as GLP-1R, GNAS, and GCG were speculated as potential targets of dulaglutide and liraglutide. Conclusions: In total, a metabolic change in lipids existed in the early stage of T2D was ameliorated after the treatments of GLP-1RAs. In addition to similar effects on improving glycemic control, remodeling of glycerophospholipid metabolism was identified as a signature of dulaglutide and liraglutide treatments.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/metabolism , Liraglutide/therapeutic use , Hypoglycemic Agents/therapeutic use , Exenatide , Glycerophospholipids , Glycated Hemoglobin
14.
Cancer Manag Res ; 13: 6767-6774, 2021.
Article in English | MEDLINE | ID: mdl-34512016

ABSTRACT

PURPOSE: This study aimed to analyze clinicopathological, survival, prognostic factors, as well as the timing of brain metastases (BM) in colorectal cancer (CRC) using data from a Chinese center. PATIENTS AND METHODS: Data of 65 consecutive CRC patients with BM were collected from a single institution in China. The time from primary tumor surgery to the occurrence of BM was calculated. Kaplan-Meier analysis was used to evaluate cumulative survival of patients. Factors associated with prognosis of overall survival (OS) were explored using Cox's proportional hazard regression models. RESULTS: The median time interval from CRC surgery to the diagnosis of BM was 24 months. After diagnosis of BM, median OS values for patients were 11 months. Extracranial metastases occurred in 45 cases (69.2%) when BM was diagnosed, and 58.5% of these patients with lung metastases Time of BMs (P=0.018), presence of extracranial metastases (P=0.033), treatment (P=0.003), CA199 (P=0.034), CA125 (P<0.001), CA242 (P=0.018), and CA211 (P=0.012) were associated with OS of patients through univariate analysis. Multivariate analysis using a Cox regression model showed that only treatment was an independent predictor for OS (conservative treatment; HR=1.861, 95% CI=1.077-3.441; P=0.048). CONCLUSION: Surgical treatment of metastatic lesions may be an alternative choice for CRC patients with BM. Identifying the timing of brain metastases can help to detect this disease early, leading to a better survival outcome.

15.
Ann Transl Med ; 9(12): 965, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34277765

ABSTRACT

BACKGROUND: Diabetes is a chronic metabolic disease and an independent risk factor for cognitive damage. Non-protein coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are involved in various pathophysiological conditions. METHODS: In this study, cognitive impairment was induced in diabetics rats by streptozotocin (STZ) injection, and the differential lncRNAs and mRNAs in rat hippocampal tissue between control and STZ-treated groups were analyzed with microarray. RESULTS: In the hippocampus of STZ-treated diabetic rats, lncRNA Vof-16, and Gnb3 mRNA were significantly upregulated and silicon analysis showed that Vof-16 and miR-205 share the same miRNA response element (MRE). In addition, the overexpression of Vof-16 in primary hippocampal neurons inhibited the expression of miR-205, and vice versa. Dual luciferase assay verified the binding between Vof-16 and miR-205, and Vof-16 was seen to promote the proliferation of primary hippocampal neurons via sponging miR-205. Silicon analysis predicted that miR-205 could bind with Gnb3, which was verified with dual luciferase assay, and the overexpression of miR-205 could inhibit the protein level of Gnb3, which could be rescued by co-expression with Vof-16. In conclusion, lncRNA Vof-16 regulated Gnb3 expression by competitively binding to miR-205. CONCLUSIONS: These results provided a novel regulation axis for the pathogenesis of STZ-induced diabetes.

16.
World J Surg Oncol ; 19(1): 220, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34284773

ABSTRACT

PURPOSE: The aim of this study was to analyze prognostic factors for ovarian metastases (OM) in colorectal cancer (CRC) using data from a Chinese center. In addition, the study aimed at developing a new clinical scoring system for prognosis of OM of CRC patients after surgery. PATIENTS AND METHODS: Data of CRC patients with OM were collected from a single Chinese institution (n = 67). Kaplan-Meier analysis was used to evaluate cumulative survival of patients. Factors associated with prognosis of overall survival (OS) were explored using Cox's proportional hazard regression models. A scoring system to determine effectiveness of prognosis was developed. RESULTS: Median OS values for patients with or without surgery were 22 and 7 months, respectively. Size of OM, number of OM, peritoneal metastasis (PM), Peritoneal cancer index (PCI), and completeness of cytoreduction (CC) were associated with OS of patients through univariate analysis. Multivariate analysis using a Cox regression model showed that only CC was an independent predictor for OS. Three variables (the size of OM >15cm, PCI ≥ 10, and carcinoembryonic antigen (CEA) >30 ng/mL) assigned one point each were used to develop a risk score. The resulting score was used for prognosis of OS. CONCLUSION: Surgical treatment of metastatic sites is effective and safe for CRC patients with OM. CC-0 is recommended for improved prognosis. The scoring system developed in this study is effective for prediction of OS of patients after surgery.


Subject(s)
Colorectal Neoplasms , Hyperthermia, Induced , Ovarian Neoplasms , Peritoneal Neoplasms , Colorectal Neoplasms/surgery , Female , Humans , Ovarian Neoplasms/surgery , Peritoneal Neoplasms/therapy , Prognosis , Retrospective Studies , Survival Rate
17.
Oncoimmunology ; 10(1): 1901464, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33796414

ABSTRACT

Immunoscore can accurately predict the prognosis of patients with stage I-III colorectal cancer. However, whether it can be used to predict the prognosis of colorectal cancer peritoneal metastases (CRCPM) remains to be validated. We analyzed peritoneal and ovarian metastases in 68 patients with CRCPM. The immunoscore (IS) was based on the infiltration level of CD3+ and CD8+ T cells, whereas the TBM score was derived from the infiltration level of CD3+, CD8+, CD20+ and CD163+ cells to tumor microenvironment (TME). The predictive value of IS and TBM scores for relapse-free survival (RFS) and overall survival (OS) of patients with CRCPM was analyzed using Kaplan Meier curve and Cox multivariate models. Significant difference in the infiltration levels of different immune cell subtypes in primary lesions, peritoneal metastasis and ovarian metastasis were compared using t-test.CRCPM patients with high IS (>1), high TBM1 score (≥2) or high TBM2 score (≥2) had a significantly longer OS (IS: median OS, not reached vs 23 months, p = .0078; TBM1: not reached vs 21.5 months, p = .013; TBM2: 39.3 months vs 15.2 months, p = .001). On the other hand, patients with high IS had a trend of improved RFS (13.4 months vs 11.0 months, p = .067). However, TBM1 and TBM2 score has no predictive utility for RFS. Multivariate analysis revealed that IS, TBM1 and TBM2 can accurately predict OS, but not RFS. Finally, the infiltration level of CD3+ T cells, CD8+ T cells, CD20+ B cells, and CD68+ macrophage was significantly higher in peritoneal metastatic tissue and ovarian metastatic tissue, relative to primary tumor tissues.The IS and TBM score of peritoneal metastases could effectively predict OS of patients with CRCPM. Peritoneal metastasis of colorectal cancer decreased the infiltration level of T and B cells.


Subject(s)
Colorectal Neoplasms , Peritoneal Neoplasms , Humans , Lymphocytes, Tumor-Infiltrating , Neoplasm Recurrence, Local , Peritoneal Neoplasms/diagnosis , Prognosis , Tumor Microenvironment
18.
Onco Targets Ther ; 14: 413-426, 2021.
Article in English | MEDLINE | ID: mdl-33488096

ABSTRACT

PURPOSE: N6-methyladenosine (m6A) modifications represent one of the most common methylation modifications, and they are mediated by m6A RNA methylation regulators. However, their functions in renal cell carcinoma (RCC) are not completely understood. The aim of this study was to investigate the effects of the regulators in RCC. MATERIALS AND METHODS: The expression levels of the 13 main m6A RNA methylation regulators in RCC were detected and consensus clustering was performed to explore their relationships with RCC. Thereafter, a risk signature based on the regulators was established. This risk model was fully verified by conducting prognostic analyses using two datasets (The Cancer Genome Atlas [TCGA] and Gene Expression Omnibus [GEO] datasets) and a ROC curve analysis. RESULTS: Of the 13 main m6A regulators, six were significantly upregulated and four were significantly downregulated in 893 RCC cases compared to 128 normal controls in the TCGA database. Consensus clustering based on the regulators identified two clusters of RCC cases, which were significantly associated with a pathological characteristic (T status). Thus, these results indicated that m6A RNA methylation regulators were associated with RCC. Thereafter, a risk model involving two of the regulators (METTL14 and WTAP) was established. The alterations in the mRNA and protein expression levels of these two regulators were further confirmed based on Human Protein Atlas data and real-time PCR in RCC and normal cell lines. The results indicated that the risk model may serve as an independent prognostic marker of overall survival, and it was also associated with clinicopathological characteristics (T status, M status, pathological stage, and gender) in RCC. CONCLUSION: Collectively, the results of this study indicated that the risk model (based on two m6A RNA methylation regulators) may serve as an independent prognostic indicator of RCC, which may aid further investigation into m6A RNA modification in RCC.

19.
J Cell Mol Med ; 25(5): 2679-2690, 2021 03.
Article in English | MEDLINE | ID: mdl-33491282

ABSTRACT

Integrins, as a large family of cell adhesion molecules, play a crucial role in maintaining intestinal homeostasis. In inflammatory bowel disease (IBD), homeostasis is disrupted. Integrin αvß6, which is mainly regulated by the integrin ß6 subunit gene (ITGB6), is a cell adhesion molecule that mediates cell-cell and cell-matrix interactions. However, the role of ITGB6 in the pathogenesis of IBD remains elusive. In this study, we found that ITGB6 was markedly upregulated in inflamed intestinal tissues from patients with IBD. Then, we generated an intestinal epithelial cell-specific ITGB6 transgenic mouse model. Conditional ITGB6 transgene expression exacerbated experimental colitis in mouse models of acute and chronic dextran sulphate sodium (DSS)-induced colitis. Survival analyses revealed that ITGB6 transgene expression correlated with poor prognosis in DSS-induced colitis. Furthermore, our data indicated that ITGB6 transgene expression increased macrophages infiltration, pro-inflammatory cytokines secretion, integrin ligands expression and Stat1 signalling pathway activation. Collectively, our findings revealed a previously unknown role of ITGB6 in IBD and highlighted the possibility of ITGB6 as a diagnostic marker and therapeutic target for IBD.


Subject(s)
Colitis/etiology , Colitis/metabolism , Epithelial Cells/metabolism , Gene Expression , Integrin beta Chains/genetics , Intestinal Mucosa/metabolism , Animals , Biomarkers , Colitis/pathology , Cytokines/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Disease Susceptibility , Epithelial Cells/pathology , Gene Expression Profiling , Gene Targeting , Genetic Vectors/genetics , Humans , Inflammation Mediators/metabolism , Integrin beta Chains/metabolism , Intestinal Mucosa/pathology , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Transgenic
20.
Gene ; 765: 145076, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32860899

ABSTRACT

Circular RNAs (circRNAs) play vital roles in the development of diabetic nephropathy (DN). In this study, we investigated the function of circ_0037128 and molecular mechanism via which it regulates diabetic nephropathy development. It was found that expression of circ_0037128 was significantly increased in mouse DN model and high glucose treated mesangial cells (MCs), and circ_0037128 loss-of-function led to reduced cell proliferation and fibrosis in vitro. Moreover, miR-17-3p acts as competitive endogenous RNA (ceRNA) that directly interacts with circ_0037128 through its miRNA response elements (MREs). Consistently, expression of miR-17-3p was remarkably down-regulated in DN model, and negatively regulated cell proliferation and fibrosis. Further investigations revealed that AKT3 was the putative target of miR-17-3p, whose expression was elevated in DN model. In conclusion, we have characterized the function of a novel circ_0037128 and illustrated the significance of circ_0037128-miR-17-3p-AKT3 axis in DN pathogenesis.


Subject(s)
Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/metabolism , Diabetic Nephropathies/genetics , Animals , Cell Movement/genetics , Cell Proliferation/genetics , Diabetes Mellitus/genetics , Disease Models, Animal , Fibrosis/genetics , Gene Expression Regulation, Neoplastic/genetics , Mice , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...