Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Life Sci ; 348: 122717, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38744419

ABSTRACT

The loss or dysfunction of pancreatic ß-cells, which are responsible for insulin secretion, constitutes the foundation of all forms of diabetes, a widely prevalent disease worldwide. The replacement of damaged ß-cells with regenerated or transplanted cells derived from stem cells is a promising therapeutic strategy. However, inducing the differentiation of stem cells into fully functional glucose-responsive ß-cells in vitro has proven to be challenging. Noncoding RNAs (ncRNAs) have emerged as critical regulatory factors governing the differentiation, identity, and function of ß-cells. Furthermore, engineered hydrogel systems, biomaterials, and organ-like structures possess engineering characteristics that can provide a three-dimensional (3D) microenvironment that supports stem cell differentiation. This review summarizes the roles and contributions of ncRNAs in maintaining the differentiation, identity, and function of ß-cells. And it focuses on regulating the levels of ncRNAs in stem cells to activate ß-cell genetic programs for generating alternative ß-cells and discusses how to manipulate ncRNA expression by combining hydrogel systems and other tissue engineering materials. Elucidating the patterns of ncRNA-mediated regulation in ß-cell biology and utilizing this knowledge to control stem cell differentiation may offer promising therapeutic strategies for generating functional insulin-producing cells in diabetes cell replacement therapy and tissue engineering.


Subject(s)
Cell Differentiation , Insulin-Secreting Cells , RNA, Untranslated , Tissue Engineering , Insulin-Secreting Cells/metabolism , Tissue Engineering/methods , Humans , RNA, Untranslated/genetics , Animals , Cell Differentiation/genetics , Stem Cells/metabolism , Stem Cells/cytology , Diabetes Mellitus/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/therapy , Hydrogels
2.
Front Immunol ; 13: 974346, 2022.
Article in English | MEDLINE | ID: mdl-36275718

ABSTRACT

Background: TP53I13 is a protein coding tumor suppression gene encoded by the tumor protein p53. Overexpression of TP53I13 impedes tumor cell proliferation. Nevertheless, TP53I13 role and expression in the emergence and progression of glioma (low-grade glioma and glioblastoma) are yet to be identified. Thus, we aim to use comprehensive bioinformatics analyses to investigate TP53I13 and its prognostic value in gliomas. Methods: Multiple databases were consulted to evaluate and assess the expression of TP53I13, such as the Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), GeneMANIA, and Gene Expression Profiling Interactive. TP53I13 expression was further explored using immunohistochemistry (IHC) and multiplex immunohistochemistry (mIHC). Through Gene Set Enrichment Analysis (GSEA), the biological functions of TP53I13 and metastatic processes associated with it were studied. Results: The expression of TP53I13 was higher in tumor samples compared to normal samples. In samples retrieved from the TCGA and CGGA databases, high TP53I13 expression was associated with poor survival outcomes. The analysis of multivariate Cox showed that TP53I13 might be an independent prognostic marker of glioma. It was also found that increased expression of TP53I13 was significantly correlated with PRS type, status, 1p/19q codeletion status, IDH mutation status, chemotherapy, age, and tumor grade. According to CIBERSORT (Cell-type Identification by Estimating Relative Subsets of RNA Transcript), the expression of TP53I13 correlates with macrophages, neutrophils, and dendritic cells. GSEA shows a close correlation between TP53I13 and p53 signaling pathways, DNA replication, and the pentose phosphate pathway. Conclusion: Our results reveal a close correlation between TP53I13 and gliomas. Further, TP53I13 expression could affect the survival outcomes in glioma patients. In addition, TP53I13 was an independent marker that was crucial in regulating the infiltration of immune cells into tumors. As a result of these findings, TP53I13 might represent a new biomarker of immune infiltration and prognosis in patients with gliomas.


Subject(s)
Brain Neoplasms , Glioma , Humans , Tumor Suppressor Protein p53/genetics , Prognosis , Brain Neoplasms/pathology , Neutrophils/metabolism , Glioma/pathology , Biomarkers , Macrophages/metabolism , Fibroblasts/metabolism , RNA
3.
Oxid Med Cell Longev ; 2022: 6711085, 2022.
Article in English | MEDLINE | ID: mdl-36062185

ABSTRACT

Background: SPTSSA encodes the small subunit A of serine palmitoyltransferase. It catalyzes the formation of sphingoid long-chain base backbone of sphingolipids. Its role in glioma prognosis and tumor-infiltrating immune cells remains unclear. Methods: We analyzed SPTSSA expression and association with clinical prognosis using GEPIA and CGGA database. Then, GSEA was performed to identify relevant biological functions of SPTSSA. The correlations between SPTSSA expression and tumor immune infiltrates were investigated using CIBERSORT and TIMER. Finally, IHC and IF were performed to confirm the value of prognosis and the correlation with immune infiltration. Results: SPTSSA expression was significantly upregulated in diffuse glioma compared to normal tissues and associated with poor survival in GEPIA and CGGA database. Then, we identified biological processes and signaling pathways associated with SPTSSA expression. The result showed that SPTSSA enriched in the GO term like oxidative stress. Finally, we showed that SPTSSA expression was significantly associated with tumor-infiltrating immune cells and overall survival via IHC. Conclusion: These findings suggest that SPTSSA expression might be used as a prognostic biomarker for glioma and potential target for novel glioma therapy.


Subject(s)
Glioblastoma , Glioma , Glioblastoma/pathology , Glioma/metabolism , Humans , Lymphocytes, Tumor-Infiltrating , Oxidative Stress , Prognosis
4.
J Oncol ; 2022: 3588117, 2022.
Article in English | MEDLINE | ID: mdl-36072975

ABSTRACT

Objective: Accumulating evidence suggests that DNA damage is associated with numerous gynecological illnesses, particularly advanced uterine corpus endometrial carcinoma (UCEC), illustrating the involvement of the DNA damage pathway in the advancement of UCEC. This research aimed to discover a robust subtype with the potential to contribute to the scientific treatment of UCEC. Methods: In this work, the expression patterns of prognostic DNA damage-related genes were curated, and consensus clustering analyses were undertaken to determine DNA damage subtypes in patients with UCEC in the TCGA cohort. Two DNA damage-related subtypes were identified for further investigation. Differentially expressed genes (DEGs) analysis, gene ontology analysis, mutation analysis, and immune cell infraction analysis were performed to find the molecular mechanism behind it. Finally, the polymerase chain reaction (PCR) was conducted to verify the correlation of the hub genes. Results: In total, 545 patients with UCEC were tested for two distinct DNA damage subtypes. The clinical prognosis was poorer among patients with DNA damage subtype 2 than those in subtype 1. The DEGs analysis and PPI analysis showed that ASMP, BUB1, CENPF, MAD2L1, NCAPG, SGO2, and TOP2A were expressed higher in UCEC tissues than in the normal tissues. Immune cell infraction analysis showed that hub genes were associated with the tumor microenvironment (TME). Conclusion: Altogether, our research identified two distinct DNA damage subtypes that are complicated and heterogeneous. A better knowledge of the characteristics of the TME may be gained by quantitative measurement of DNA damage subtypes in individual patients, which can also lead to the development of more successful treatment regimens.

5.
J Oncol ; 2022: 8027686, 2022.
Article in English | MEDLINE | ID: mdl-35865089

ABSTRACT

Background: The expression of HAUS Augmin-like complex subunit 1 (HAUS1), a protein-coding gene, is low in normal samples among various cancers with pan-cancer analysis. The depletion of HAUS1 in cells decreases the G2/M cell compartment and induces apoptosis. However, the detailed expression pattern of HAUS1 and its correlation with immune infiltration in glioma (LGG and GBM) (LGG: low-grade glioma; GBM: glioblastoma) remain unknown. Therefore, in this study, we examined the role and prognostic value of HAUS1 in glioma. Methods: Transcriptional expression data of HAUS1 were collected from the CGGA and TCGA databases. The Kaplan-Meier analysis, univariate and multivariate Cox analyses, and receiver operating characteristic (ROC) curves were used to analyse the clinical significance of HAUS1 in glioma. The STRING database was used to analyse protein-protein interactions (PPI), and the "ClusterProfiler" package was used for functional enrichment analysis to examine the possible biological roles of HAUS1. In addition, the HAUS1 promoter methylation modification was analysed using MEXPRESS, and the association between HAUS1 expression and tumour-infiltrating immune cells was investigated using CIBERSORT. Results: Based on the data retrieved from TCGA (703 samples) and CGGA (1018 samples), an elevated expression of HAUS1 was observed in glioma samples, which was associated with poorer survival of patients, unfavourable clinical characteristics, 1p/19q codeletion status, WHO grade, and IDH mutation status. Furthermore, multivariate and univariate Cox analyses revealed that HAUS1 was an independent predictor of glioma. HAUS1 expression level was associated with several tumour-infiltrating immune cells, such as Th2 cells, macrophages, and activated dendritic cells. The outcomes of ROC curve analysis showed that HAUS1 was good to prognosticate immune infiltrating levels in glioma with a higher area under the curve (AUC) value (AUC = 0.974). Conclusions: HAUS1 was upregulated and served as a biomarker for poor prognosis in patients with glioma. High HAUS1 expression was associated with several tumour-infiltrating immune cells such as Th2 cells, macrophages, and activated dendritic cells, which had high infiltration levels. Therefore, these findings suggest that HAUS1 is a potential biomarker for predicting the prognosis of patients with glioma and plays a pivotal role in immune infiltration in glioma.

6.
Dis Markers ; 2022: 5009512, 2022.
Article in English | MEDLINE | ID: mdl-35634441

ABSTRACT

Background: Receptor expressed in lymphoid tissues-like 2 (RELL2), which is a member of RELT family, is closely associated with the plasma membrane and acts as a modulator for RELT signaling. Overexpression of RELL2 induces the activation of MAPK14/p38 cascade and apoptosis. However, whether RELL2 contributes to cancers remains unclear. Here, we examined its role in cancer patient prognosis and various tumors. Methods: We used several bioinformatics methods, specifically gene set enrichment analysis (GSEA), ScanNeo, and ESTIMATE, to analyze the CCLE dataset, GTEx dataset, and TCGA dataset. We investigated the possible association of RELL2 with the microsatellite instability (MSI) of various tumors, tumor mutational burden (TMB), immune checkpoint, immune neoantigens, immune microenvironment, and patient prognosis. Result: RELL2 is highly expressed in cancer compared with normal tissues. RELL2 expression is linked with worse progression-free interval and overall survival in numerous cancers. In most cancers, high RELL2 expression was related to a poor prognosis. RELL2 expression was significantly associated with the tumor microenvironment, MSI, and TMB. RELL2 expression is strongly associated with phenotypes that are of major clinical significance, particularly those associated with immune neoantigens and the expression profiles of immune checkpoint genes in pan-cancer. RELL2 expression strongly linked with the expressions of methyltransferases and DNA repair genes. It also significantly correlated with multiple signaling pathways through gene set enrichment analysis. Conclusion: RELL2 may be a prognostic biomarker in pan-cancer and may have an important function in tumorigenesis and progression.


Subject(s)
Neoplasms , Biomarkers, Tumor/genetics , Carrier Proteins/genetics , Humans , Lymphoid Tissue/metabolism , Lymphoid Tissue/pathology , Membrane Proteins/genetics , Microsatellite Instability , Mutation , Neoplasms/pathology , Tumor Microenvironment/genetics
7.
Int J Biochem Cell Biol ; 139: 106054, 2021 10.
Article in English | MEDLINE | ID: mdl-34390854

ABSTRACT

BACKGROUND: Glioma is the most prevalent brain tumor with high mortality and morbidity and the prognosis of patients remains very poor. Glioma therapy is largely limited by the extraordinary invasive capability in glioma and the lack of valuable biomarkers of LGG and GBM. So it is urgent and important for us to identify valuable biomarkers to treat glioma patients. SCAMP4 (Secretory Carrier-Associated Membrane Protein 4) has not been reported to be linked to cancer prognostic or any treatments. METHODS: We analyzed the role of SCAMP4 in LGG and GBM via the publicly available CGGA (The Chinese Glioma Atlas) and TCGA (The Cancer Genome Atlas) databases. The correlations between SCAMP4 and the immune cells were analyzed by applying CIBERSORT and TIMER, while R was utilized in the analysis of the statistical data. RESULTS: Our results indicated that SCAMP4 which is correlated to age, stage, grade and tumor status and may be a promising independent prognostic factor in LGG and GBM. Meanwhile, the expression of SCAMP4 is closely associated with some tumor-infiltrating immune cells such as Monocytes, NK cells activated, Macrophages, Mast cells resting and so on. Furthermore, during the in-depth analysis of the integrated correlations, we also find that isocitrate dehydrogenase 1 (IDH1) and SCAMP4 shared similar prognostic values. CONCLUSIONS: Together with all these findings, the identification of SCAMP4 as a new biomarker could elucidate how the immune microenvironment influence the glioma development. With further analysis, SCAMP4 may be a predictor for glioma prognosis.


Subject(s)
Glioma , Biomarkers, Tumor , Brain Neoplasms , Gene Expression Profiling , Humans , Middle Aged , Prognosis , Tumor Microenvironment
8.
World Neurosurg ; 151: e37-e46, 2021 07.
Article in English | MEDLINE | ID: mdl-33746099

ABSTRACT

BACKGROUND: Gliomas, particularly high-grade gliomas, are the most common primary brain tumors. From the Chinese Glioma Genome Atlas (CGGA) database, the relationships between the altered molecular pathways and gliomas could be easily observed. A close connection in the occurrence of the pathogenesis exists between the microenvironment, the glioma, and the associated genes. METHODS: Validation of the role of ZNF311 oncogene was confirmed by data from the CGGA dataset on glioblastoma and low-grade glioma. Furthermore, we used CIBERSORT to analyze the correlation between ZNF311 and cancer immune infiltrates. RESULTS: According to our analysis, ZNF311 was expressed higher in patients with grade-depended glioma with poor prognosis. In addition, we obtained valuable prognostic results between isocitrate dehydrogenase 1 (IDH1) and ZNF311 through the analysis of integrated correlations. Similarly, we simultaneously revealed the prognostic results between 1p/19q and ZNF311. In addition, we found that ZNF311 is correlated with a large number of tumor-infiltrating immune cells. CONCLUSIONS: Based on the study findings, we conclude that ZNF311 is potentially a novel biomarker for assessing prognosis and immune infiltration in glioblastoma and diffuse glioma cases.


Subject(s)
Biomarkers, Tumor/blood , Brain Neoplasms/diagnosis , Brain Neoplasms/immunology , DNA-Binding Proteins/blood , Glioma/diagnosis , Glioma/immunology , Adult , Aged , Algorithms , Brain Neoplasms/blood , Databases, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioma/blood , Humans , Isocitrate Dehydrogenase/blood , Male , Middle Aged , Prognosis , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Survival Analysis , Tumor Microenvironment
9.
Cell Mol Neurobiol ; 40(4): 653-662, 2020 May.
Article in English | MEDLINE | ID: mdl-31782037

ABSTRACT

In the developing central nervous system, the terminal differentiation of oligodendrocytes (OLs) is regulated by both extrinsic and intrinsic factors. Recent studies have suggested that the Notch-Hes signaling pathway influences the maturation of oligodendrocytes in culture and during development. However, the specific Notch receptors and their downstream effectors Hes genes that are involved in oligodendrocyte maturation have not been investigated systematically. In this study, we showed that Notch1 and Notch3 are expressed in oligodendrocyte precursor cells (OPCs) during gliogenesis, and Hes5 is the major Notch downstream transcription factor that is transiently expressed in OPCs. Overexpression of Notch intracellular domain (NICD) and Hes5 proteins in embryonic chicken spinal cord suppressed both the endogenous and Sox10-induced Mbp gene expression. Unexpectedly, overexpression of NICD/Hes5 did not inhibit Sox10 induction of Olig2 expression and Myrf induced Mbp expression, suggesting the differential inhibitory effects of NICD/Hes5 signaling on Sox10 activation of myelin-related genes and early progenitor genes.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Receptors, Notch/metabolism , SOXE Transcription Factors/antagonists & inhibitors , Signal Transduction , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Chickens , Gene Expression Regulation, Developmental , Mice, Knockout , Myelin Basic Protein/metabolism , Oligodendroglia/metabolism , Receptors, Notch/genetics , SOXE Transcription Factors/metabolism , Spinal Cord/embryology , Spinal Cord/metabolism , Stem Cells/metabolism
10.
Glia ; 67(9): 1654-1666, 2019 09.
Article in English | MEDLINE | ID: mdl-31038233

ABSTRACT

Notch signaling has been implicated in the inhibition of oligodendrocyte differentiation and myelin gene expression during early development. However, inactivation of a particular Notch or Hes gene only produces a mild phenotype in oligodendrocyte development possibly due to the functional redundancies among closely related family members. To uncover the full role of Notch signaling in myelin development and regeneration, we generated the Sox10rtTA/+ ; TetO-dnMAML1 double transgenic mice in which expression of dominant negative Master-mind 1 (dnMAML1) gene can be selectively induced in oligodendrocyte precursor cells (OPCs) for complete blockade of Notch signaling. It is found that dnMAML1 expression leads to robust precocious OL differentiation and premature axonal myelination in the spinal cord, possibly by upregulating Nkx2.2 and downregulating Pdgfra expression. Unexpectedly, at late embryonic stages, dnMAML1 expression dramatically increased the number of OPCs, indicating a stage-dependent effect of Notch signaling on OPC proliferation. In addition, dnMAML1 also significantly enhances axonal remyelination following chemical-induced demyelination, providing a promising therapeutic target for lesion repair in demyelinating disease.


Subject(s)
Myelin Sheath/metabolism , Nerve Regeneration/physiology , Nuclear Proteins/metabolism , Oligodendrocyte Precursor Cells/metabolism , Spinal Cord/growth & development , Spinal Cord/metabolism , Transcription Factors/metabolism , Animals , Brain/growth & development , Brain/metabolism , Cell Proliferation/physiology , Demyelinating Diseases/metabolism , Homeobox Protein Nkx-2.2 , Homeodomain Proteins/metabolism , Mice, Transgenic , Neurogenesis/physiology , Nuclear Proteins/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Transcription Factors/genetics , Zebrafish Proteins/metabolism
11.
BMC Vet Res ; 11: 85, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25880824

ABSTRACT

BACKGROUND: Highly pathogenic H5N1 avian influenza viruses pose a debilitating pandemic threat in poultry. Current influenza vaccines predominantly focus on hemagglutinin (HA) which anti-HA antibodies are often neutralizing, and are used routinely to assess vaccine immunogenicity. However, Neuraminidase (NA), the other major glycoprotein on the surface of the influenza virus, has historically served as the target for antiviral drug therapy and is much less studied in the context of humoral immunity. The aim of this study was to evaluate the protective immunity of NA based on Lactococcus lactis (L.lactis) expression system against homologous H5N1 virus challenge in a chicken model. RESULTS: L.lactis/pNZ2103-NA which NA is derived from A/Vietnam/1203/2004 (H5N1) (VN/1203/04) was constructed based on L.lactis constitutive expression system in this study. Chickens vaccinated orally with 10(12) colony-forming unit (CFU) of L.lactis/pNZ2103-NA could elicit significant NA-specific serum IgG and mucosa IgA antibodies, as well as neuraminidase inhibition (NI) titer compared with chickens administered orally with saline or L.lactis/pNZ2103 control. Most importantly, the results revealed that chickens administered orally with L.lactis/pNZ2103-NA were completely protected from a lethal H5N1 virus challenge. CONCLUSIONS: The data obtained in the present study indicate that recombinant L.lactis/pNZ2103-NA in the absence of adjuvant can be considered an effective mucosal vaccine against H5N1 infection in chickens via oral administration. Further, these findings support that recombinant L.lactis/pNZ2103-NA can be used to perform mass vaccination in poultry during A/H5N1 pandemic.


Subject(s)
Chickens , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza in Birds/prevention & control , Lactococcus lactis/metabolism , Neuraminidase/immunology , Administration, Oral , Animals , Influenza Vaccines/administration & dosage , Influenza in Birds/virology , Lactococcus lactis/genetics , Mass Vaccination , Neuraminidase/metabolism , Specific Pathogen-Free Organisms
12.
Virus Res ; 196: 56-9, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25445345

ABSTRACT

The increasing outbreaks of highly pathogenic avian influenza A (HPAI) H5N1 viruses in birds and human bring out an urgent need to develop a safe and effective vaccine to control and prevent H5N1 infection. Lactococcus lactis (L. lactis) based vaccine platform is a promising approach for mucosal H5N1 vaccine development. Intranasal immunization is the potential to induce mucosal immune response which is associated with protective immunity. To develop a safe and effective mucosal vaccine against HAPI H5N1, we extended our previous study by evaluating the immunogenicity of L. lactis-psA-HA1 in the absence of adjuvant via intranasal route in the ferret model. Ferrets administered intranasally with L. lactis-pgsA-HA1 could elicit robust humoral and mucosal immune responses, as well as significant HI titers. Importantly, ferrets were completely protected from H5N1 virus challenge. These findings suggest that L. lactis-pgsA-HA1 can be considered an alternative mucosal vaccine during A/H5N1 pandemic.


Subject(s)
Immunization , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/immunology , Lactococcus lactis/genetics , Lactococcus lactis/immunology , Orthomyxoviridae Infections/prevention & control , Administration, Intranasal , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Ferrets , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Influenza Vaccines/administration & dosage , Orthomyxoviridae Infections/mortality
13.
Virology ; 476: 189-195, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25546254

ABSTRACT

Influenza A viruses pose a serious threat to public health. Current influenza A vaccines predominantly focus on hemagglutinin (HA) and show strain-specific protection. Neuraminidase (NA) is much less studied in the context of humoral immunity against influenza A viruses. The purpose of this study is to evaluate the cross protective immunity of NA presented on Lactococcus lactis (L.lactis) surface against homologous and heterologous influenza A viruses in the mouse model. L.lactis/pNZ8110-pgsA-NA was constructed in which pgsA was used as an anchor protein. Mice vaccinated orally with L.lactis/pNZ8110-pgsA-NA could elicit significant NA-specific serum IgG and mucosa IgA antibodies, as well as neuraminidase inhibition (NI) titers. Importantly, L.lactis/pNZ8110-pgsA-NA provided 80% protection against H5N1, 60% protection against H3N2 and H1N1, respectively. These findings suggest that recombinant L.lactis/pNZ110-pgsA-NA in the absence of adjuvant via oral administration can be served as an effective vaccine candidate against diverse strains of influenza A viruses.


Subject(s)
Cross Protection , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Lactococcus lactis/genetics , Neuraminidase/immunology , Viral Proteins/immunology , Animals , Antibodies, Viral/immunology , Female , Gene Expression , Humans , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype/physiology , Influenza A Virus, H5N1 Subtype/physiology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Influenza, Human/virology , Lactococcus lactis/metabolism , Mice , Mice, Inbred BALB C , Neuraminidase/administration & dosage , Neuraminidase/genetics , Viral Proteins/administration & dosage , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...