Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters











Publication year range
1.
Adv Mater ; : e2409983, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39185797

ABSTRACT

Phosphorescent supramolecular hydrogels are currently a prevalent topic for their great promise in various photonic applications. Herein, an efficient near-infrared (NIR) phosphorescence supramolecular hydrogel is reported via the hierarchical assembly strategy in aqueous solution, which is fabricated from amphiphilic bromonaphthalimide pyridinium derivative (G), exfoliated Laponite (LP) nanosheets, and polymeric polyacrylamide (PAAm). Initially, G spontaneously self-aggregates into spherical nanoparticles covered with positively charged pyridinium units and emits single fluorescence at 410 nm. Driven by electrostatic interactions with negatively charged nanosheets, the nanoparticles subsequently function as the cross-linked binders and coassemble with LP into supramolecular hydrogels with an engendered red room-temperature phosphorescence (RTP) up to 620 nm. Benefiting from hydrogen-bonding interactions-mediated physical cross-linkage, the further introduction of PAAm not only significantly elevates the mechanical strength of the hydrogels showing fast self-healing capability, but also increases phosphorescence lifetime from 2.49 to 4.20 ms, especially generating phosphorescence at even higher temperature (τ 363 K = 2.46 ms). Additionally, efficient RTP energy transfer occurs after doping a small amount of organic dye heptamethine cyanine (IR780) as an acceptor into hydrogels, resulting in a long-lived NIR emission at 823 nm with a high donor/acceptor ratio, which is successfully applied for cell labeling in the NIR window.

2.
Small ; : e2404622, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058229

ABSTRACT

Inspired by natural photosynthesis, the visible-light-driven Z-scheme system is very effective and promising for boosting photocatalytic hydrogen production and pollutant degradation. Here, a synergistic Z-scheme photocatalyst is constructed by coupling ReS2 nanosheet and ZnIn2S4 nanoflower and the experimental evidence for this direct Z-scheme heterostructure is provided by X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance. Consequently, such a unique nanostructure makes this Z-scheme heterostructure exhibit 23.7 times higher photocatalytic hydrogen production than that of ZnIn2S4 nanoflower. Moreover, the ZnIn2S4/ReS2 photocatalyst is also very stable for photocatalytic hydrogen evolution, almost without activity decay even storing for two weeks. Besides, this Z-scheme heterostructure also exhibits superior photocatalytic degradation rates of methylene blue (1.7 × 10-2 min-1) and mitoxantrone (4.2 × 10-3 min-1) than that of ZnIn2S4 photocatalyst. The ultraviolet-visible absorption spectra, transient photocurrent spectra, open-circuit potential measurement, and electrochemical impedance spectroscopy reveal that the superior photocatalytic performance of ZnIn2S4/ReS2 heterostructure is mostly attributed to its broad and strong visible-light absorption, effective separation of charge carrier, and improved redox ability. This work provides a promising nanostructure design of a visible-light-driven Z-scheme heterostructure to simultaneously promote photocatalytic reduction and oxidation activity.

3.
J Org Chem ; 89(5): 3413-3418, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38377573

ABSTRACT

An efficient cascade intramolecular cyclization/intermolecular nucleophilic addition reaction of allenyl benzoxazinone with isatin or isatin-derived ketimine has been established by using Pd0-π-Lewis base catalysis. A series of 3-hydroxy-2-oxindoles and 3-amino-2-oxindoles with quaternary carbon atoms at the C3 position were synthesized in good yields under mild conditions through this protocol.

4.
J Fluoresc ; 34(2): 829-832, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37389710

ABSTRACT

Organic fluorophores with dual-state emission (DSE) are rare or difficult to observe because most of them display either aggregation-induced emission (AIE) or aggregation-caused quenching (ACQ). Amazing works have been accomplished, yet most of the DSE compounds were excited by UV light which limits their wide application in bioimaging. In this work, we achieved a visible-light excited DSE fluorophore and realized its imaging in SKOV-3 cells and zebrafish. The naphtho[2',3':4,5]imidazo[1,2-a]pyridine (NIP) core ensures its emission in dilute solution. Meanwhile, the twisted phenyl ring blocks fluorescence quenching induced by the π-π stacking and leads to the emission of the solid. The fluorescence intensity is steady even after 6 h of continuous intense sunlight. More importantly, photostability of NIP in cells is much better than commercial dye (mitochondrial green).

5.
Chem Asian J ; 19(3): e202300899, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38092700

ABSTRACT

Construction of new system and exploration of new approach are of great importance for the improvement of their photophysical properties to meet the growing various uses of phosphorescent materials. Triphenylmethane (TPM), composed only of carbon and hydrogen, exhibits excellent color tunable phosphorescence in air, with ultralong lifetime (836 ms), and wide color-tunable range (from cyan to green, then to yellow and finally to orange, 525 nm-616 nm). Through careful comparison with the single crystal diffraction structure of tetraphenylmethane (TTPM) and theoretical calculation analysis, we believe that various clusters formed through space interactions are crucial for color-tunable phosphorescence.

6.
Ecotoxicol Environ Saf ; 266: 115557, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37820476

ABSTRACT

Pesticide stress on plants is receiving increased scrutiny due to its effect on plant secondary metabolism and nutritional quality. Tannic acid (TA) is a natural polyphenolic compound showing excellent antioxidant properties and is involved in alleviating stress. The present study thoroughly investigated the effects and mechanism of exogenous TA on relieving imidacloprid (IMI) stress in tea plants. Our research found that TA(10 mg/L) activated the antioxidant defense system, enhanced the antioxidant ability, reduced the accumulation of ROS and membrane peroxidation, and notably promoted tea plant tolerance to imidacloprid stress. Additionally, TA boosted photosynthetic capacity, strengthened the accumulation of nutrients. regulated detoxification metabolism, and accelerated the digestion and metabolism of imidacloprid in tea plants. Furthermore, TA induced significant changes in 90 important metabolites in tea, targeting 17 metabolic pathways through extensively targeted metabolomics. Specifically, TA activated the flavonoid biosynthetic pathway, resulting in a 1.3- to 3.1-fold increase in the levels of 17 compounds and a 1.5- to 63.8-fold increase in the transcript level of related genes, such as ANR, LAR and CHS in this pathway. As a potential tea health activator, TA alleviates the oxidative damage caused by imidacloprid and improves the yield and quality of tea under pesticide stress.


Subject(s)
Camellia sinensis , Pesticides , Antioxidants/pharmacology , Antioxidants/metabolism , Trees/metabolism , Flavonoids/pharmacology , Flavonoids/metabolism , Biosynthetic Pathways , Oxidative Stress , Camellia sinensis/genetics , Tannins/pharmacology , Tannins/metabolism , Tea , Pesticides/metabolism
7.
Chem Asian J ; 18(16): e202300450, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37387329

ABSTRACT

Due to the unclear mechanism and lack of effective design for color-tunable ultralong organic phosphorescence (UOP) in a single-component molecule, the development of new types of single-component UOP materials with color-tunable property remains challenging. Herein, commercially available triphenylmethylamine-based single-component phosphors featuring color-tunablity and ultralong lifetime (0.56 s) are reported. The changed afterglow colors from cyan to orange were observed after different wavelengths of UV excitation. Crystal structure and calculation studies show that multiple emission centers in the aggregated states may be responsible for the color-tunablity. In addition, visual probing of UV light (from 260 to 370 nm) and colorful anti-counterfeiting were conducted. More importantly, UV light ranging from 350 to 370 nm could be detected with the minimal interval of 2 nm. The findings provide a new type of single-component color-tunable UOP materials and shed new light on mechanism and design for such materials.

8.
Environ Sci Pollut Res Int ; 30(35): 84452-84461, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37369897

ABSTRACT

The efficiency of graphite carbon nitride (g-C3N4, CN) as a photocatalyst is limited due to its quick recombination of photogenerated carriers and layer re-stacking. To enhance its photocatalytic activity, a multi-heterojunction photocatalyst was developed using TiO2 and black phosphorus (BP) coupled with CN through a liquid-phase ultrasonic method. The composite, TiO2/BP/CN, demonstrated a wider range of light response and higher photo-induced carrier separation efficiency. The presence of TiO2 nanoparticles on CN nanolayers reduced interlayer stacking and increased specific surface area, thereby providing more reactive sites. As a result, the optimized TiO2/BP/CN composite demonstrated enhanced photocatalytic efficiency for the degradation of Rhodamine B (RhB), with a first-order kinetic constant of 2.8, 4.3, and 6.4 times that of CN, TiO2, and BP, respectively. Active substance capture experiments confirmed that superoxide radical (·O2) was the primary reactive species. This study highlights the potential of the developed TiO2/BP/CN composite as a promising photocatalyst for environmental remediation applications.


Subject(s)
Titanium , Catalysis , Titanium/chemistry , Rhodamines/chemistry
9.
ACS Appl Mater Interfaces ; 15(4): 6156-6168, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36669150

ABSTRACT

To mimic the natural photosynthesis system, a Z-scheme heterostructure is proposed as a viable and effective strategy for efficient solar energy utilization such as photocatalysis and photoelectrochemical (PEC) water splitting due to the high carrier separation efficiency, fast charge transport, strong redox, and wide light absorption. However, it remains a huge challenge to form a direct Z-scheme heterostructure due to the internal electric-field restriction and vital band-alignment at the interface. Herein, the van der Waals heterostructure based on the allotrope SnSe2 and SnSe is designed and synthesized by a two-step vapor phase deposition method to overcome the limitation in the formation of the Z-scheme heterostructure for the first time. The Z-scheme heterostructure of SnSe2/SnSe is confirmed by X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, PEC measurement, density functional theory calculations, and water splitting. Strikingly, the PEC photodetectors based on the Z-scheme heterostructure show a synergistic effect of superior stability from SnSe and fast photoresponse from SnSe2. As such, the SnSe2/SnSe Z-scheme heterostructure shows a good photodetection performance in the ultraviolet to visible wavelength range. Furthermore, the photodetector shows a faster response/recovery time of 13/14 ms, a higher photosensitivity of 529.13 µA/W, and a higher detectivity of 4.94 × 109 Jones at 475 nm compared with those of single components. Furthermore, the photodetection stability of the SnSe2/SnSe is also greatly improved by a-thin-Al2O3-layer passivation. The results imply the promising rational design of a direct Z-scheme heterostructure with efficient charge transfer for high performance of optoelectronic devices.

10.
Molecules ; 28(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36677574

ABSTRACT

A mitochondria-targeted NIR probe based on the FRET mechanism was developed. It shows ultra-large Stokes shifts (460 nm) and emission shifts (285 nm). Furthermore, we also realized the imaging of SO2 in living SKOV-3 cells, zebrafish and living mice which may be useful for understanding the biological roles of SO2 in mitochondria and in vivo.


Subject(s)
Fluorescent Dyes , Zebrafish , Humans , Mice , Animals , HeLa Cells , Mitochondria , Pyridines
11.
Adv Sci (Weinh) ; 10(6): e2205460, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36574467

ABSTRACT

Large-scale multi-heterostructure and optimal band alignment are significantly challenging but vital for photoelectrochemical (PEC)-type photodetector and water splitting. Herein, the centimeter-scale bismuth chalcogenides-based cascade heterostructure is successfully synthesized by a sequential vapor phase deposition method. The multi-staggered band alignment of Bi2 Te3 /Bi2 Se3 /Bi2 S3 is optimized and verified by X-ray photoelectron spectroscopy. The PEC photodetectors based on these cascade heterostructures demonstrate the highest photoresponsivity (103 mA W-1 at -0.1 V and 3.5 mAW-1 at 0 V under 475 nm light excitation) among the previous reports based on two-dimensional materials and related heterostructures. Furthermore, the photodetectors display a fast response (≈8 ms), a high detectivity (8.96 × 109 Jones), a high external quantum efficiency (26.17%), and a high incident photon-to-current efficiency (27.04%) at 475 nm. Due to the rapid charge transport and efficient light absorption, the Bi2 Te3 /Bi2 Se3 /Bi2 S3 cascade heterostructure demonstrates a highly efficient hydrogen production rate (≈0.416 mmol cm-2  h-1 and ≈14.320 µmol cm-2  h-1 with or without sacrificial agent, respectively), which is far superior to those of pure bismuth chalcogenides and its type-II heterostructures. The large-scale cascade heterostructure offers an innovative method to improve the performance of optoelectronic devices in the future.

12.
J Fluoresc ; 33(1): 305-309, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36414919

ABSTRACT

Commercially available compounds that can be directly used as fluorescent probes will greatly promote the development of fluorescent imaging. Based on our previously work related to nitrogen bridgehead heterocycles, herein, a commercially available compound, 6-chloroimidazo[1,2-a]pyridine-2-carboxylic acid, has been detected for monitoring pH value (3.0-7.0). The probe proves to have high selectivity and sensitivity, brilliant reversibility, and extremely short response time. The real-time imaging of pH changes in yeast was also conducted.


Subject(s)
Fluorescent Dyes , Picolinic Acids , Fluorescent Dyes/chemistry , Hydrogen-Ion Concentration
13.
Org Lett ; 24(51): 9442-9446, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36537815

ABSTRACT

We herein designed and synthesized allenyl benzoxazinones of a novel type, which were then involved in a Pd-catalyzed asymmetric cascade intramolecular cyclization/intermolecular Michael addition reaction with 1-azadienes. A broad range of chiral C2-functionalized quinoline derivatives were afforded in moderate to good yields (up to 93%) with high enantioselectivities (up to 93% ee) in this reaction.

14.
Nanoscale Horiz ; 7(10): 1217-1227, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-35959697

ABSTRACT

Van der Waals heterostructures have great potential for the emerging self-powered photoelectrochemical photodetectors due to their outstanding photoelectric conversion capability and efficient interfacial carrier transportation. By considering the band alignment, structural design, and growth optimization, the heterostructures of vertically oriented SnS2 with different densities on MoS2 nanosheets are designed and fabricated using a two-step epitaxial growth method. Compared with SnS2, MoS2, and low density-vertical SnS2/MoS2 heterostructure, the high density-vertical SnS2/MoS2 heterostructure exhibits largely enhanced self-powered photodetection performances, such as a giant photocurrent density (∼932.8 µA cm-2), an excellent photoresponsivity (4.66 mA W-1), and an ultrafast response/recovery time (3.6/6.4 ms) in the ultraviolet-visible range. This impressive enhancement of high density-vertical SnS2/MoS2 photodetectors is mainly ascribed to the essentially improved charge transfer and carrier transport of type-II band alignment heterostructures and the efficient light absorption from the unique light-trapping structure. In addition, the photoelectrocatalytic water splitting performance of the high density-vertical SnS2/MoS2 heterostructure also benefits from the type-II band alignment and the light-trapping structure. This work provides valuable inspiration for the design of two-dimensional optoelectronic and photoelectrochemical devices with improved performance by the morphology and heterostructure design.

15.
J Colloid Interface Sci ; 628(Pt B): 886-895, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36030714

ABSTRACT

Photoelectrochemical (PEC)-type devices provide promising ways for harvesting solar energy and converting it to electric and chemical energy with a low-cost and simple manufacturing process. However, the high light absorption, fast carrier separation, and low carrier recombination are still great challenges in reaching high performance for PEC devices. As emergent two-dimensional (2D) materials, Sb2Se3 and Sb2S3 exhibit desirable photoelectric properties due to the narrow bandgap, large optical absorption, and high carrier mobility. Herein, Sb2S3/Sb2Se3 heterojunction is synthesized by a two-step physical vapor deposition method. The type-II Sb2S3/Sb2Se3 heterojunction displays excellentphotoelectric properties such as a high photocurrent density (Iph âˆ¼ 162 µA cm-2), a high photoresponsivity (Rph âˆ¼ 3700 µA W-1), and a fast time response speed (rising time ∼ 2 ms and falling time ∼ 4.5 ms) even in harsh environment (H2SO4 electrolyte). Especially, the Sb2S3/Sb2Se3 shows an excellent self-powered photoresponse (Iph âˆ¼ 40 µA cm-2, Rph âˆ¼ 850 µA W-1). This increment is attributed to the improvement in light absorption, charge separation, and charge transfer efficiency. Taking these advantages, the Sb2S3/Sb2Se3 heterojunction also exhibits higher PEC water splitting synergically, which is approximately 3 times larger than that of Sb2Se3 and Sb2S3. These results pave the way for high-performance PEC devices by integrating 2D narrow bandgap semiconductors.

16.
J Colloid Interface Sci ; 621: 374-384, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35462178

ABSTRACT

Optimizing interfacial charge transfer in type-II heterostructures, is one promising solution to improve efficiency of the solar energy conversion in photodetectors and solar cells. Herein, the SnS/SnSe2/ITO and SnSe2/SnS/ITO heterostructures are prepared by two-step physical vapor epitaxial growth. X-ray photoelectron spectroscopy confirms the SnS/SnSe2 heterostructure belongs to type-II band-alignment. The SnS/SnSe2 based photodetector shows higher photoresponsivity, which is approximately 2, 9, and 14 times larger than that of SnSe2/SnS, SnSe2, and SnS, respectively. The improvement of SnS/SnSe2 in photoelectric response mainly comes from high light harvesting and efficient charge transportation than individual SnSe2 and SnS, which is verified by UV-Vis absorption spectra. Electrochemical impedance spectroscopy, open circuit potentials, and Mott-Schottky characterization results further confirm that the better photodetection performance of SnS/SnSe2/ITO than that of SnSe2/SnS/ITO heterostructure is from the appropriate energy level cascade facilitating electron transport. These results provide an effective way to further improve the performance of heterostructure-based optoelectronic devices by an appropriate interface design.

17.
Nanotechnology ; 33(18)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35086082

ABSTRACT

Black phosphorus (BP) is a two-dimensional (2D) semiconductor that has recently attracted much interest due to its unique characteristics. However, BP is susceptible to oxidization under ambient conditions. In this work, a facile one-step route is presented, in which stable P-C bonds were formed by ball milling bulk BP and multi-walled carbon nanotubes (MWCNTs) mixture without any additives. The BP-MWCNTs hybrid and the milled BP (m-BP) were both dispersed in water under ambient conditions, and their optical absorbances were monitored. The resulting data showed that the absorbance value of the BP-MWCNTs hybrid decreased by 10.87% after 5 d, whereas the m-BP decreased by 59.21%. Surprisingly, the BP-MWCNTs hybrid also exhibited ultrahigh photocatalytic activity in the visible light range. Within 60 min of irradiation, the removal efficiency of rhodamine B (RhB) by the BP-MWCNTs hybrid reached 88.42%, which is four times higher than that of the bare m-BP. This improvement can be attributed to the formation of the P-C bond and the enhanced surface adsorption capacity resulting from the introduction of the MWCNTs, indicating that the utilization of the charges on the surface of the photocatalyst is further improved. In short, this study not only provides an easy method to synthesize the stable BP-based material for practical applications but also represents a new approach to enhance the photocatalytic activity of BP.

18.
ACS Appl Mater Interfaces ; 14(1): 2390-2400, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34971308

ABSTRACT

Two-dimensional (2D) layered materials have shown layer-dependent optical properties in both linear optical and nonlinear optical (NLO) regimes due to prominent interlayer coupling and quantum confinement in an atomic scale. However, the NLO properties become more complicated as both saturable absorption (SA) and reverse saturable absorption (RSA) easily happen in 2D materials, which results in a significant challenge to understand the evolution of nonlinear absorption with layers. Motivated by this, chemical vapor-deposited chalcogenide compounds (WS2, MoS2, and Bi2S3) are used to investigate the pump intensity and layer number-dependent NLO properties. The values of nonlinear absorption coefficients of these chalcogenide compounds increase with the pump intensity by an 800 nm femtosecond laser, which can be described by an empirical power law function. The SA process due to the large transition probability of the ground state readily takes place in thick samples, while RSA occurs easily in thin samples due to the two-photon absorption (TPA). The transition from TPA to SA is deduced to occur at 13L-WS2, 15L-MoS2, and 5L-Bi2S3, which is related to the layer-dependent band gaps. Our results provide an efficient way to tune optical nonlinearities with a controlled layer number and to design corresponding NLO devices such as optical switches and saturable absorbers.

19.
Langmuir ; 37(40): 11657-11664, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34597056

ABSTRACT

To understand the molecular interaction mechanism and develop peptide-based hydrogels, a ß-hairpin peptide CBHH was used as the model peptide, and its coassembly performance with succinic, malic, and tartaric dicarboxylates has been investigated with circular dichroism spectroscopy (CD) and atomic force microscopy (AFM). The rheological properties and cell culture performance of the coassembled hydrogels have also been assessed. The results showed that the dicarboxylates could induce the folding and self-assembly of the ß-hairpin peptide and promote its gelation at low pH. The effects of the dicarboxylates on peptide self-assembly and hydrogel properties were correlated to their hydroxyl group number. The toxicity of the hydrogel has been assessed with NIH-3T3 cells by MTT and Calcein-AM/PI experiments, and it was confirmed that the hydrogel was biocompatible and could be used as cell culture scaffolds. We hope that this study would provide a novel way for biomaterial fabrication in cell and tissue engineering.


Subject(s)
Hydrogels , Peptides , Animals , Biocompatible Materials , Hydrogels/toxicity , Mice , Peptides/toxicity , Rheology , Tissue Engineering
20.
J Fluoresc ; 31(5): 1219-1225, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34255255

ABSTRACT

A novel pH-responsive probe based on an imidazo[1,2-a]indole fluorophore architecture is reported. The probe was highly selective to strongly acidic pH (pKa = 3.56) with high sensitivity and a fast response time (within 30 s). The probe did not demonstrate any fluorescence changes in the presence of interfering metal ions, and it featured excellent reversibility under strongly acidic conditions. The mechanism of detection of the probe was determined to be based on intramolecular charge transfer (ICT) at different pH. The probe was also able to be used for imaging for detecting acidic pH in Saccharomyces cerevisiae.


Subject(s)
Fluorescent Dyes , Saccharomyces cerevisiae , HeLa Cells , Humans , Hydrogen-Ion Concentration , Indoles
SELECTION OF CITATIONS
SEARCH DETAIL