Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Life Sci ; 342: 122513, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38387700

ABSTRACT

BACKGROUND: The epidermic microbiota plays crucial roles in the pathogenesis of atopic dermatitis (AD), a common inflammatory skin disease. Melatonin (MLT) has been shown to ameliorate skin damage in AD patients, yet the underlying mechanism is unclear. METHODS: Using 2,4-dinitrofluorobenzene (DNFB) to induce an AD model, MLT intervention was applied for 14 days to observe its pharmaceutical effect. Skin lesions were observed using HE staining, toluidine blue staining and electron microscopy. Dermal proinflammatory factor (IL-4 and IL-13) and intestinal barrier indices (ZO1 and Occludin) were assessed by immunohistochemistry and RT-qPCR, respectively. The dysbiotic microbiota was analyzed using 16S rRNA sequencing. RESULTS: MLT significantly improved skin lesion size; inflammatory status (mast cells, IgE, IL-4, and IL-13); and the imbalance of the epidermal microbiota in AD mice. Notably, Staphylococcus aureus is the key bacterium associated with dysbiosis of the epidermal microbiota and may be involved in the fine modulation of mast cells, IL-4, IL-13 and IgE. Correlation analysis between AD and the gut revealed that intestinal dysbiosis occurred earlier than that of the pathological structure in the gut. CONCLUSION: Melatonin reverses DNFB-induced skin damage and epidermal dysbiosis, especially in S. aureus.


Subject(s)
Dermatitis, Atopic , Melatonin , Microbiota , Skin Diseases , Humans , Mice , Animals , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dinitrofluorobenzene/toxicity , Melatonin/pharmacology , Interleukin-13 , Staphylococcus aureus , Interleukin-4/pharmacology , RNA, Ribosomal, 16S/genetics , Dysbiosis/pathology , Skin , Skin Diseases/pathology , Immunoglobulin E
2.
Planta Med ; 88(11): 933-949, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34521131

ABSTRACT

The dried stem bark of Berberis kansuensis is a commonly used Tibetan herbal medicine for the treatment of diabetes. Its main chemical components are alkaloids, such as berberine, magnoflorine and jatrorrhizine. However, the role of gut microbiota in the in vivo metabolism of these chemical components has not been fully elucidated. In this study, an ultra-high performance liquid chromatography method coupled with Orbitrap mass spectrometry (UHPLC-Orbitrap-MS) technology was applied to detect and identify prototype components and metabolites in rat intestinal contents and serum samples after oral administration of a B. kansuensis extract. A total of 16 prototype components and 40 metabolites were identified. The primary metabolic pathways of the chemical components from B. kansuensis extract were demethylation, desaturation, deglycosylation, reduction, hydroxylation, and other conjugation reactions including sulfation, glucuronidation, glycosidation, and methylation. By comparing the differences of metabolites between diabetic and pseudo-germ-free diabetic rats, we found that the metabolic transformation of some chemical components in B. kansuensis extract such as bufotenin, ferulic acid 4-O-ß-D-glucopyranoside, magnoflorine, and 8-oxyberberine, was affected by the gut microbiota. The results revealed that the gut microbiota can affect the metabolic transformation of chemical constituents in B. kansuensis extract. These findings can enhance our understanding of the active ingredients of B. kansuensis extract and the key role of the gut microbiota on them.


Subject(s)
Berberis , Diabetes Mellitus, Experimental , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Animals , Berberis/chemistry , Chromatography, High Pressure Liquid/methods , Diabetes Mellitus, Experimental/drug therapy , Drugs, Chinese Herbal/chemistry , Rats
3.
J Immunol Res ; 2021: 9920786, 2021.
Article in English | MEDLINE | ID: mdl-34337085

ABSTRACT

This study is to elucidate the functions of miR-100 in hepatocellular carcinoma progression and to explore the underlying mechanisms. Expression levels of miR-100 in normal-cancer hepatocellular carcinoma tissues were measured using quantitative real-time PCR (qRT-PCR). The invasive and proliferative abilities of hepatocellular carcinoma cell lines transfected with mimic-NC or mimic-miR-100 were measured using transwell, CCK-8, and colony formation assays. The binding sites between CXCR7 and miR-100 were determined using luciferase reporter assays. The correlation of CXCR7 and miR-100 in hepatocellular carcinoma progression was further confirmed by cotransfection assays. Our results showed that miR-100 was significantly lower expressed in hepatocellular carcinoma tissues and negatively associated with CXCR7 expression. Cell functional assays' results found that upregulation of miR-100 inhibited the proliferative, invasive, and migrative abilities in hepatocellular carcinoma cells. Luciferase reporter assay suggested that CXCR7 mRNA and miR-100 bound one another. Increasing CXCR7 expression reversed the inhibitive effects of upregulated miR-100 in hepatocellular carcinoma cells. Further study showed that miR-100/CXCR7 played a role in hepatocellular carcinoma progression by regulating metalloproteinase-2 (MMP2) and vascular endothelial growth factor (VEGF). Conclusively, miR-100 exerts antitumor effects on hepatocellular carcinoma. Overexpression of miR-100 attenuates the invasive and proliferative abilities of hepatocellular carcinoma cells by targeting CXCR7.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , MicroRNAs/metabolism , Receptors, CXCR/genetics , Animals , Carcinoma, Hepatocellular/secondary , Carcinoma, Hepatocellular/surgery , Case-Control Studies , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , HEK293 Cells , Hep G2 Cells , Hepatectomy , Humans , Liver/pathology , Liver/surgery , Liver Neoplasms/pathology , Liver Neoplasms/surgery , Mice , Neoplasm Invasiveness/genetics , Xenograft Model Antitumor Assays
4.
Bioengineered ; 12(1): 5305-5322, 2021 12.
Article in English | MEDLINE | ID: mdl-34409922

ABSTRACT

Early growth response-1 (EGR1) is a multi-domain protein and an immediate early transcription factor that is induced during liver injury and controls the expression of a variety of genes implicated in metabolism, cell proliferation, and tumorigenesis. Liver cancer (LC) is a highly malignant disease with high mortality worldwide. This study focused on the function of EGR1 in LC development and the mechanism of action. Two LC-related datasets GSE101728 and GSE138178 downloaded from the Gene Expression Omnibus (GEO) database were used for identification of key genes involved in cancer progression. A microarray analysis was conducted to identify differentially expressed microRNAs (miRNAs) after EGR1 knockdown. The target gene of miR-675 was identified by integrated analysis. EGR1 and miR-675 were highly expressed, whereas sestrin 3 (SESN3) was poorly expressed in LC tissues and cells. High EGR1 expression was associated with poor liver function and disease severity in patients with LC. Knockdown of EGR1 weakened proliferation and invasiveness of LC cells. EGR1 bound to the miR-675 promoter and increased its transcription, and miR-675 bound to SESN3 mRNA to induce its downregulation. miR-675 upregulation promoted the malignance of LC cells, but further upregulation of SESN3 reduced invasiveness of cells. SESN3 was enriched in the Wnt/ß-catenin signaling. EGR1 and miR-675 activated the Wnt/ß-catenin through downregulating SESN3. This study demonstrated that EGR1 promotes the malignant behaviors of LC cells through mediating the miRNA-675/SESN3/Wnt/ß-catenin axis.


Subject(s)
Early Growth Response Protein 1/genetics , Heat-Shock Proteins/genetics , Liver Neoplasms , MicroRNAs/genetics , Wnt Signaling Pathway/genetics , Aged , Cell Line, Tumor , Cell Proliferation/genetics , Early Growth Response Protein 1/metabolism , Female , Heat-Shock Proteins/metabolism , Humans , Liver/metabolism , Liver/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , MicroRNAs/metabolism , Middle Aged
5.
J Ethnopharmacol ; 273: 113995, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-33675912

ABSTRACT

BACKGROUND: The stem bark of Berberis kansuensis Schneid (BK) is a commonly used Tibetan medicine for the treatment of type 2 diabetes (T2D). However, its therapeutic mechanisms remain unclear. AIM OF THE STUDY: Our aim is to clarify the role of gut microbiota in the anti-diabetic activity of BK extract. MATERIALS AND METHODS: High fat diet combined with low-dose streptozotocin (45 mg/kg) was used to establish a T2D rat model, and the body weight of rats was measured every five days. Fasting blood glucose (FBG), glycosylated serum protein (GSP), insulin resistance index (HOMA-IR), insulin sensitivity index (ISI), lipopolysaccharide (LPS), and three inflammatory factors (TNF-α, IL-1 ß and IL-6) were measured to evaluate the anti-diabetic activity of BK. Moreover, pseudo-germ-free animals were prepared by oral administration of an antibiotic mixture (100 mg/kg neomycin, 100 mg/kg ampicillin and 50 mg/kg metronidazole) twice per day for 6 days to assess the role of gut microbiota. Gut microbiota analysis was performed through 16S rRNA high-throughput sequencing method. RESULTS: After 30 days of administration, BK extract could significantly decrease the levels of body weight, FBG, GSP, HOMA-IR, LPS, TNF-α, IL-1ß and IL-6, and increase ISI levels in T2D rats. However, when the gut microbiota of T2D rats was disturbed by antibiotics, BK could not improve HOMA-IR and ISI levels in T2D rats. The results indicated that the anti-diabetic effect of BK might depend on the gut microbiota. Moreover, sequencing of 16S rRNA genes demonstrated that BK could significantly improve the gut microbiota disorder of T2D rats. Specifically, BK increased the abundance of phyla Bacteroidetes and genera Akkermansia and the ratio of Bacteroides/Firmicutes, while reducing the abundance of phyla Proteobacteria and genera Collinella, [Ruminococcus]_gauvreauii_Group, Escherichia Shigella, Enterococcus, Fusobacterium, Holdemanella, and Prevotella_9 in T2D rats. Additionally, correlation analysis revealed that Akkermansia was positively correlated with ISI, while [Ruminococcus]_gauvreauii_Group, Collinella, Escherichia Shigella, Enterococcus, Fusobacterium, Holdemanella and Prevotella_9 were positively correlated with FBG, GSP, LPS, HOMA-IR, TNF-α, IL-1ß, and IL-6. CONCLUSION: BK extract has a good anti-diabetic effect on T2D rats. The mechanism by which this extract exerts its action is, at least partly, related to its regulation of gut microbiota.


Subject(s)
Berberis/chemistry , Diabetes Mellitus, Type 2/drug therapy , Gastrointestinal Microbiome/drug effects , Plant Extracts/therapeutic use , Animals , Anti-Bacterial Agents/pharmacology , Diabetes Mellitus, Experimental , Diet, High-Fat/adverse effects , Drugs, Chinese Herbal/therapeutic use , Male , Plant Extracts/chemistry , Rats, Wistar
6.
Front Microbiol ; 11: 1498, 2020.
Article in English | MEDLINE | ID: mdl-32714312

ABSTRACT

The emergence of resistant Candida albicans has made clinical fluconazole (FLC) treatment difficult. Improving sensitivity to FLC is an effective way to treat resistant isolates. Berberine hydrochloride (BBH) is a commonly used traditional Chinese medicine with antimicrobial effects, especially in resistant isolates. We investigated the molecular mechanisms underlying BBH and FLC synergism on biofilm-positive FLC-resistant C. albicans inhibition. Checkerboard microdilution assays and time-kill assays showed a strong synergistic effect between BBH and FLC in resistant C. albicans isolates, causing a significant 32-512-fold reduction in minimum inhibitory concentrations. BBH combined with FLC inhibited intracellular FLC efflux due to key efflux pump gene CDR1 downregulation, whereas FLC alone induced high CDR1 transcription in resistant strains. Further, BBH + FLC inhibited yeast adhesion, morphological hyphae transformation, and biofilm formation by downregulating the hyphal-specific genes ALS3, HWP1, and ECE1. BBH caused cytoplasmic Ca2+ influx, while FLC alone did not induce high intracellular Ca2+ levels. The vacuolar calcium channel gene YVC1 was upregulated, while the vacuolar calcium pump gene PMC1 was downregulated in the BBH + FLC and BBH alone groups. However, vacuolar calcium gene expression after FLC treatment was opposite in biofilm-positive FLC-resistant C. albicans, which might explain why BBH induces Ca2+ influx. These results demonstrate that BBH + FLC exerts synergistic effects to increase FLC sensitivity by regulating multiple targets in FLC-resistant C. albicans. These findings further show that traditional Chinese medicines have multi-target antimicrobial effects that may inhibit drug-resistant strains. This study also found that the vacuolar calcium regulation genes YVC1 and PMC1 are key BBH + FLC targets which increase cytoplasmic Ca2+ in resistant isolates, which might be critical for reversing biofilm-positive FLC-resistant C. albicans.

7.
Clin Chim Acta ; 509: 43-51, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32505770

ABSTRACT

OBJECTIVES: To determine whether the integration platelet features in blood and platelet rich plasma can establish a model to diagnose lung cancer and colon cancer, even differentiate lung malignancy from lung benign diseases. METHODS: 245 individuals including 159 lung cancer and 86 normal participants were divided into the training cohort and testing cohort randomly. Then, 32 colon cancers, 37 lung cancers, and 21 benign patients were enrolled into validate cohort. The whole blood and corresponding platelet rich plasma (PRP) samples from all participants were prospectively collected, and the platelet features were determined. The features which are statistically significant at the univariate analysis in the training cohort and reported significant features were entered the diagnostic model. A receiver operator characteristic (ROC) curve was drawn to evaluate the accuracy of the model in each cohort. RESULTS: In the training cohort, multiple platelet features were significantly different in lung cancer patients, including MPV in whole blood, MPV, and platelet count in PRP and platelet recovery rate (PRR). For the training cohort, the diagnostic model for lung cancer performed well (AUC = 0.92). The probability distribution of lung cancers and controls in testing cohort were also separated well by the diagnostic model (AUC = 0.79). The diagnostic model for colon cancer also performed well (AUC = 0.79). The model also has a potential value in differentiating the lung malignancy from the benign (AUC = 0.69). CONCLUSION: The PRR was first raised and used in the detection of lung cancer. This study identified a diagnostic model based on PRR and other platelet features in whole blood and PRP samples with the potential to distinguish patients with lung cancer or colon cancer from healthy controls. The model could also be used to distinguish between lung cancer from the benign disease.


Subject(s)
Blood Platelets , Lung Neoplasms , Platelet-Rich Plasma , Cohort Studies , Humans , Lung Neoplasms/diagnosis , Platelet Count
8.
Chem Biodivers ; 17(6): e2000122, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32274851

ABSTRACT

Ba-Wei-Long-Zuan granule (BWLZ) is a traditional herbal preparation. It has been widely used for the treatment of rheumatoid arthritis (RA). However, its active ingredients and mechanisms of action are still unclear. The present study aims to reveal the active compounds and anti-arthritic mechanisms of BWLZ against collagen-induced arthritis (CIA) by using 1 H-NMR-based metabolomics, molecular docking and network pharmacology methods. After 30 days of administration, BWLZ could effectively improve the metabolic disorders in CIA rats. The anti-arthritic effect of BWLZ was related to its restoration of 16 disturbed serum metabolites. Molecular docking and network analysis showed that 20 compounds present in BWLZ could act on multiple targets. Among them, coclaurine and hesperidin showed the highest hit rates for target proteins related to both metabolic regulation and RA, indicating that these two compounds might be potential active ingredients of BWLZ. Moreover, pathway enrichment analysis suggested that the anti-arthritic mechanisms of BWLZ might be attributed to its network regulation of several biological processes, such as steroid hormone biosynthesis, mTOR signaling pathway, alanine, aspartate and glutamate metabolism, and synthesis and degradation of ketone bodies. These results provide further evidence for the anti-arthritic properties of BWLZ and are beneficial for its quality control and clinical application. The potential targets and biological processes found in this study may provide valuable information for further studying the molecular mechanisms of BWLZ against RA. In addition, our work provides new insights for revealing the active ingredients and regulatory mechanisms of complex herbal preparations.


Subject(s)
Antirheumatic Agents/chemistry , Drugs, Chinese Herbal/chemistry , Metabolomics , Animals , Antirheumatic Agents/metabolism , Antirheumatic Agents/pharmacology , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Binding Sites , Biomarkers/blood , Biomarkers/metabolism , Cytochrome P-450 CYP1A2/chemistry , Cytochrome P-450 CYP1A2/metabolism , Discriminant Analysis , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/therapeutic use , Hesperidin/chemistry , Hesperidin/metabolism , Hesperidin/therapeutic use , Isoquinolines/chemistry , Isoquinolines/metabolism , Isoquinolines/therapeutic use , Magnetic Resonance Spectroscopy , Male , Medicine, Chinese Traditional , Molecular Docking Simulation , Principal Component Analysis , Protein Structure, Tertiary , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...