Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Chemphyschem ; 24(15): e202300182, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37170881

ABSTRACT

We demonstrate that the strong N2 bond can be efficiently dissociated at low pressure and ambient temperature on a Si(111)-7x7 surface. The reaction was experimentally investigated by scanning tunnelling microscopy and X-ray photoemission spectroscopy. Experimental and density functional theory results suggest that relatively low thermal energy collision of N2 with the surface can facilitate electron transfer from the Si(111)-7x7 surface to the π*-antibonding orbitals of N2 that significantly weaken the N2 bond. This activated N2 triple bond dissociation on the surface leads to the formation of a Si3 N interface.

2.
Nanomaterials (Basel) ; 11(8)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34443932

ABSTRACT

On-surface metal-organic polymers have emerged as a class of promising 2D materials. Here, we propose a new strategy to obtain coordination polymers by transforming supramolecular networks into coordination polymers by surface-assisted cyclo-dehydrogenation of organic building blocks. All nanostructures are fully characterized by using scanning tunneling microscopy under ultra-high vacuum on a gold surface. We demonstrated that the balance between molecule-molecule interaction and molecule-substrate interaction can be drastically modified by a strong modification of the geometry of the molecules thanks to a thermal annealing. This new way is an efficient method to elaborate on-surface coordination polymers.

3.
Chem Commun (Camb) ; 57(49): 6043-6045, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34036987

ABSTRACT

The growth of graphene nanoribbons has been widely investigated on metal surfaces in an ultrahigh vacuum. Here, we re-investigate the growth of graphene nanoribbons obtained by thermal annealing of 9,9'-bianthryl derivatives on a Cu(111) surface by using scanning tunnelling microscopy. On the basis of our results, we propose to complete the reaction mechanism commonly accepted in the literature by adding an intramolecular hydrogen atom transfer from the 2,2'-positions to the 10,10'-positions as a key-step in the formation of (3,1)-graphene nanoribbons on a Cu(111) surface.

4.
Nanoscale ; 13(1): 349-354, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33346311

ABSTRACT

Over the past decade, on-surface fabrication of organic nanostructures has been widely investigated for the development of molecular electronic components, catalysts, and new materials. Here, we introduce a new strategy to obtain alkyl oligomers in a controlled manner using on-surface radical oligomerisations that are triggered by electrons between the tip of a scanning tunnelling microscope and the Si(111)√3 ×√3 R30°-B surface. This electron transfer event only occurs when the bias voltage is below -4.5 V and allows access to reactive radical species under exceptionally mild conditions. This transfer can effectively 'switch on' a sequence leading to the formation of oligomers of defined size distribution thanks to the on-surface confinement of the reactive species. Our approach enables new ways to initiate and control radical oligomerisations with tunnelling electrons, leading to molecularly precise nanofabrication.

SELECTION OF CITATIONS
SEARCH DETAIL