Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 61(39): e202203560, 2022 09 26.
Article in English | MEDLINE | ID: mdl-35904863

ABSTRACT

Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a key enzyme involved in the trimming of antigenic peptides presented by Major Histocompatibility Complex class I. It is a target of growing interest for the treatment of autoimmune diseases and in cancer immunotherapy. However, the discovery of potent and selective ERAP2 inhibitors is highly challenging. Herein, we have used kinetic target-guided synthesis (KTGS) to identify such inhibitors. Co-crystallization experiments revealed the binding mode of three different inhibitors with increasing potency and selectivity over related enzymes. Selected analogues engage ERAP2 in cells and inhibit antigen presentation in a cellular context. 4 d (BDM88951) displays favorable in vitro ADME properties and in vivo exposure. In summary, KTGS allowed the discovery of the first nanomolar and selective highly promising ERAP2 inhibitors that pave the way of the exploration of the biological roles of this enzyme and provide lead compounds for drug discovery efforts.


Subject(s)
Aminopeptidases , Antigen Presentation , Aminopeptidases/metabolism , Histocompatibility Antigens Class I , Peptides/metabolism
2.
J Med Chem ; 63(8): 3817-3833, 2020 04 23.
Article in English | MEDLINE | ID: mdl-31820982

ABSTRACT

Kinetic target-guided synthesis (KTGS) is an original discovery strategy allowing a target to catalyze the irreversible synthesis of its own ligands from a pool of reagents. Although pioneered almost two decades ago, it only recently proved its usefulness in medicinal chemistry, as exemplified by the increasing number of protein targets used, the wider range of target and pocket types, and the diversity of therapeutic areas explored. In recent years, two new leads for in vivo studies were released. Amidations and multicomponent reactions expanded the armamentarium of reactions beyond triazole formation and two new examples of in cellulo KTGS were also disclosed. Herein, we analyze the origins and the chemical space of both KTGS ligands and warhead-bearing reagents. We review the KTGS timeline focusing on recent cases in order to give medicinal chemists the full scope of this strategy which has great potential for hit discovery and hit or lead optimization.


Subject(s)
Chemistry, Pharmaceutical/trends , Drug Delivery Systems/trends , Drug Discovery/trends , Protease Inhibitors/chemistry , Protein Synthesis Inhibitors/chemistry , Animals , Chemistry, Pharmaceutical/methods , Drug Delivery Systems/methods , Drug Discovery/methods , Humans , Kinetics , Protease Inhibitors/administration & dosage , Protease Inhibitors/pharmacokinetics , Protein Synthesis Inhibitors/administration & dosage , Protein Synthesis Inhibitors/pharmacokinetics
3.
J Med Chem ; 61(16): 7043-7064, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30016860

ABSTRACT

Studies indicate that MAO-B is induced in peripheral inflammatory diseases. To target peripheral tissues using MAO-B inhibitors that do not permeate the blood-brain barrier (BBB) the MAO-B-selective inhibitor deprenyl was remodeled by replacing the terminal acetylene with a CO2H function, and incorporating a para-OCH2Ar motif (compounds 10a-s). Further, in compound 32 the C-2 side chain corresponded to CH2CN. In vitro, 10c, 10j, 10k, and 32 were identified as potent reversible MAO-B inhibitors, and all four compounds were more stable than deprenyl in plasma, liver microsomal, and hepatocyte stability assays. In vivo, they demonstrated greater plasma bioavailability. Assessment of in vitro BBB permeability showed that compound 10k is a P-glycoprotein (P-gp) substrate and 10j displayed mild interaction. Importantly, compounds 10c, 10j, 10k, and 32 displayed significantly reduced BBB permeability after intravenous, subcutaneous, and oral administration. These polar MAO-B inhibitors are pertinent leads for evaluation of efficacy in noncentral nervous system (CNS) inflammatory disease models.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Nervous System Diseases/drug therapy , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Dogs , Drug Development , Humans , Madin Darby Canine Kidney Cells , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Nervous System Diseases/metabolism
4.
J Med Chem ; 60(21): 9067-9089, 2017 11 09.
Article in English | MEDLINE | ID: mdl-28985084

ABSTRACT

Hydroxamic acids are outstanding zinc chelating groups that can be used to design potent and selective metalloenzyme inhibitors in various therapeutic areas. Some hydroxamic acids display a high plasma clearance resulting in poor in vivo activity, though they may be very potent compounds in vitro. We designed a 57-member library of hydroxamic acids to explore the structure-plasma stability relationships in these series and to identify which enzyme(s) and which pharmacophores are critical for plasma stability. Arylesterases and carboxylesterases were identified as the main metabolic enzymes for hydroxamic acids. Finally, we suggest structural features to be introduced or removed to improve stability. This work thus provides the first medicinal chemistry toolbox (experimental procedures and structural guidance) to assess and control the plasma stability of hydroxamic acids and realize their full potential as in vivo pharmacological probes and therapeutic agents. This study is particularly relevant to preclinical development as it allows obtaining compounds equally stable in human and rodent models.


Subject(s)
Hydroxamic Acids/chemistry , Plasma/chemistry , Small Molecule Libraries , Animals , Carboxylic Ester Hydrolases , Drug Stability , Humans , Metabolic Clearance Rate , Mice , Plasma/enzymology , Rats , Structure-Activity Relationship
5.
ACS Med Chem Lett ; 8(3): 333-337, 2017 Mar 09.
Article in English | MEDLINE | ID: mdl-28337326

ABSTRACT

Endoplasmic reticulum aminopeptidase 2 assists with the generation of antigenic peptides for presentation onto Major Histocompatibility Class I molecules in humans. Recent evidence has suggested that the activity of ERAP2 may contribute to the generation of autoimmunity, thus making ERAP2 a possible pharmacological target for the regulation of adaptive immune responses. To better understand the structural elements of inhibitors that govern their binding affinity to the ERAP2 active site, we cocrystallized ERAP2 with a medium activity 3,4-diaminobenzoic acid inhibitor and a poorly active hydroxamic acid derivative. Comparison of these two crystal structures with a previously solved structure of ERAP2 in complex with a potent phosphinic pseudopeptide inhibitor suggests that engaging the substrate N-terminus recognition properties of the active site is crucial for inhibitor binding even in the absence of a potent zinc-binding group. Proper utilization of all five major pharmacophores is necessary, however, to optimize inhibitor potency.

6.
Anal Bioanal Chem ; 406(11): 2695-707, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24553660

ABSTRACT

The main analytical use of Ca(2+)-regulated photoproteins from luminous coelenterates is for real-time non-invasive visualization of intracellular calcium concentration ([Ca(2+)]i) dynamics in cells and whole organisms. A limitation of this approach for in vivo deep tissue imaging is the fact that blue light emitted by the photoprotein is highly absorbed by tissue. Seven novel coelenterazine analogues were synthesized and their effects on the bioluminescent properties of recombinant obelin from Obelia longissima and aequorin from Aequorea victoria were evaluated. Only analogues having electron-donating groups (m-OCH3 and m-OH) on the C6 phenol moiety or an extended resonance system at the C8 position (1-naphthyl and α-styryl analogues) showed a significant red shift of light emission. Of these, only the α-styryl analogue displayed a sufficiently high light intensity to allow eventual tissue penetration. The possible suitability of this compound for in vivo assays was corroborated by studies with aequorin which allowed the monitoring of [Ca(2+)]i dynamics in cultured CHO cells and in hippocampal brain slices. Thus, the α-styryl coelenterazine analogue might be potentially useful for non-invasive, in vivo bioluminescence imaging in deep tissues of small animals.


Subject(s)
Aequorin/chemistry , Imidazoles/chemistry , Luminescent Agents/chemistry , Luminescent Measurements/instrumentation , Luminescent Proteins/chemistry , Molecular Imaging/instrumentation , Pyrazines/chemistry , Animals , CHO Cells , Cricetulus , Hydrozoa , Molecular Imaging/methods
7.
Bioorg Med Chem Lett ; 22(24): 7471-4, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23131340

ABSTRACT

Based on our earlier reported neuropeptide FF receptors antagonist (RF9), we carried out an extensive structural exploration of the N-terminus part of the amidated dipeptide Arg-Phe-NH(2) in order to establish a structure-activity relationships (SAR) study towards both NPFF receptor subtypes. This SAR led to the discovery of dipeptides (12, 35) with subnanomolar affinities towards NPFF1 receptor subtype, similar to endogenous ligand NPVF. More particularly, compound 12 exhibited a potent in vivo preventive effect on opioid-induced hyperalgesia at low dose. The significant selectivity of 12 toward NPFF1-R indicates that this receptor subtype may play a critical role in the anti-opioid activity of NPFF-like peptides.


Subject(s)
Dipeptides/pharmacology , Receptors, Neuropeptide/antagonists & inhibitors , Dipeptides/chemical synthesis , Dipeptides/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Structure-Activity Relationship
8.
Org Lett ; 9(14): 2653-6, 2007 Jul 05.
Article in English | MEDLINE | ID: mdl-17555323

ABSTRACT

[(NHC)AuCl] complexes (NHC = N-heterocyclic carbene), in conjunction with a silver salt, were found to efficiently catalyze the rearrangement of allylic acetates under both conventional and microwave-assisted heating. The optimization of several reaction parameters (solvent, silver salt, and ligand) as well as a study of the reaction scope are reported. The steric hindrance of the ligand bound to gold was found crucial for the outcome of the reaction as only extremely bulky ligands permitted the isomerization.

9.
Chemistry ; 13(22): 6437-51, 2007.
Article in English | MEDLINE | ID: mdl-17530724

ABSTRACT

The [(NHC)AuI]-catalyzed (NHC=N-heterocyclic carbene) formation of alpha,beta-unsaturated carbonyl compounds (enones and enals) from propargylic acetates is described. The reactions occur at 60 degrees C in 8 h in the presence of an equimolar mixture of [(NHC)AuCl] and AgSbF6 and produce conjugated enones and enals in high yields. Optimization studies revealed that the reaction is sensitive to the solvent, the NHC, and, to a lesser extent, to the silver salt employed, leading to the use of [(ItBu)AuCl]/AgSbF6 in THF as an efficient catalytic system. This transformation proved to have a broad scope, enabling the stereoselective formation of (E)-enones and -enals with great structural diversity. The effect of substitution at the propargylic and acetylenic positions has been investigated, as well as the effect of aryl substitution on the formation of cinnamyl ketones. The presence or absence of water in the reaction mixture was found to be crucial. From the same phenylpropargyl acetates, anhydrous conditions led to the formation of indene compounds via a tandem [3,3] sigmatropic rearrangement/intramolecular hydroarylation process, whereas simply adding water to the reaction mixture produced enone derivatives cleanly. Several mechanistic hypotheses, including the hydrolysis of an allenol ester intermediate and SN2' addition of water, were examined to gain an insight into this transformation. Mechanistic investigations and computational studies support [(NHC)AuOH], produced in situ from [(NHC)AuSbF6] and H2O, instead of cationic [(NHC)AuSbF6] as the catalytically active species. Based on DFT calculations performed at the B3LYP level of theory, a full catalytic cycle featuring an unprecedented transfer of the OH moiety bound to the gold center to the C[triple chemical bond]C bond leading to the formation of a gold-allenolate is proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...