Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Leukemia ; 37(6): 1245-1253, 2023 06.
Article in English | MEDLINE | ID: mdl-37085611

ABSTRACT

Tandem duplications (TDs) of the UBTF gene have been recently described as a recurrent alteration in pediatric acute myeloid leukemia (AML). Here, by screening 1946 newly diagnosed adult AML, we found that UBTF-TDs occur in about 3% of patients aged 18-60 years, in a mutually exclusive pattern with other known AML subtype-defining alterations. The characteristics of 59 adults with UBTF-TD AML included young age (median 37 years), low bone marrow (BM) blast infiltration (median 25%), and high rates of WT1 mutations (61%), FLT3-ITDs (51%) and trisomy 8 (29%). BM morphology frequently demonstrates dysmyelopoiesis albeit modulated by the co-occurrence of FLT3-ITD. UBTF-TD patients have lower complete remission (CR) rates (57% after 1 course and 76% after 2 courses of intensive chemotherapy [ICT]) than UBTF-wild-type patients. In patients enrolled in the ALFA-0702 study (n = 614 patients including 21 with UBTF-TD AML), the 3-year disease-free survival (DFS) and overall survival of UBTF-TD patients were 42.9% (95%CI: 23.4-78.5%) and 57.1% (95%CI: 39.5-82.8%) and did not significantly differ from those of ELN 2022 intermediate/adverse risk patients. Finally, the study of paired diagnosis and relapsed/refractory AML samples suggests that WT1-mutated clones are frequently selected under ICT. This study supports the recognition of UBTF-TD AML as a new AML entity in adults.


Subject(s)
Leukemia, Myeloid, Acute , Adult , Child , Humans , Disease-Free Survival , fms-Like Tyrosine Kinase 3/genetics , Leukemia, Myeloid, Acute/genetics , Mutation , Prognosis , Remission Induction
3.
BMC Bioinformatics ; 23(1): 448, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36307762

ABSTRACT

BACKGROUND: Internal tandem duplications in the FLT3 gene, termed FLT3-ITDs, are useful molecular markers in acute myeloid leukemia (AML) for patient risk stratification and follow-up. FLT3-ITDs are increasingly screened through high-throughput sequencing (HTS) raising the need for robust and efficient algorithms. We developed a new algorithm, which performs no alignment and uses little resources, to identify and quantify FLT3-ITDs in HTS data. RESULTS: Our algorithm (FiLT3r) focuses on the k-mers from reads covering FLT3 exons 14 and 15. We show that those k-mers bring enough information to accurately detect, determine the length and quantify FLT3-ITD duplications. We compare the performances of FiLT3r to state-of-the-art alternatives and to fragment analysis, the gold standard method, on a cohort of 185 AML patients sequenced with capture-based HTS. On this dataset FiLT3r is more precise (no false positive nor false negative) than the other software evaluated. We also assess the software on public RNA-Seq data, which confirms the previous results and shows that FiLT3r requires little resources compared to other software. CONCLUSION: FiLT3r is a free software available at https://gitlab.univ-lille.fr/filt3r/filt3r . The repository also contains a Snakefile to reproduce our experiments. We show that FiLT3r detects FLT3-ITDs better than other software while using less memory and time.


Subject(s)
Leukemia, Myeloid, Acute , Tandem Repeat Sequences , Humans , Tandem Repeat Sequences/genetics , Leukemia, Myeloid, Acute/genetics , High-Throughput Nucleotide Sequencing , Exons , Base Sequence , fms-Like Tyrosine Kinase 3/genetics , Mutation
4.
Blood Adv ; 5(5): 1540-1551, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33687433

ABSTRACT

Oncogenesis and ontogeny of blastic plasmacytoid dendritic cell neoplasm (BPDCN) remain uncertain, between canonical plasmacytoid dendritic cells (pDCs) and AXL+ SIGLEC6+ DCs (AS-DCs). We compared 12 BPDCN to 164 acute leukemia by Affymetrix HG-U133 Plus 2.0 arrays: BPDCN were closer to B-cell acute lymphoblastic leukemia (ALL), with enrichment in pDC, B-cell signatures, vesicular transport, deubiquitination pathways, and AS-DC signatures, but only in some cases. Importantly, 1 T-cell ALL clustered with BPDCN, with compatible morphology, immunophenotype (cCD3+ sCD3- CD123+ cTCL1+ CD304+), and genetics. Many oncogenetic pathways are deregulated in BPDCN compared with normal pDC, such as cell-cycle kinases, and importantly, the transcription factor SOX4, involved in B ontogeny, pDC ontogeny, and cancer cell invasion. High-throughput sequencing (HaloPlex) showed myeloid mutations (TET2, 62%; ASXL1, 46%; ZRSR2, 31%) associated with lymphoid mutations (IKZF1), whereas single-nucleotide polymorphism (SNP) array (Affymetrix SNP array 6.0) revealed frequent losses (mean: 9 per patient) involving key hematological oncogenes (RB1, IKZF1/2/3, ETV6, NR3C1, CDKN2A/B, TP53) and immune response genes (IFNGR, TGFB, CLEC4C, IFNA cluster). Various markers suggest an AS-DC origin, but not in all patients, and some of these abnormalities are related to the leukemogenesis process, such as the 9p deletion, leading to decreased expression of genes encoding type I interferons. In addition, the AS-DC profile is only found in a subgroup of patients. Overall, the cellular ontogenic origin of BPDCN remains to be characterized, and these results highlight the heterogeneity of BPDCN, with a risk of a diagnostic trap.


Subject(s)
Myeloproliferative Disorders , Transcriptome , Carcinogenesis , Dendritic Cells , Genomics , Humans , Lectins, C-Type , Membrane Glycoproteins , Receptors, Immunologic , SOXC Transcription Factors
5.
Haematologica ; 106(12): 3056-3066, 2021 12 01.
Article in English | MEDLINE | ID: mdl-33054115

ABSTRACT

Neoplasms involving plasmacytoid Dendritic Cells (pDCs) include Blastic pDC Neoplasms (BPDCN) and other pDC proliferations, where pDCs are associated with myeloid malignancies: most frequently Chronic MyeloMonocytic Leukemia (CMML) but also Acute Myeloid Leukemia (AML), hereafter named pDC-AML. We aimed to determine the reactive or neoplastic origin of pDCs in pDC-AML, and their link with the CD34+ blasts, monocytes or conventional DCs (cDCs) associated in the same sample, by phenotypic and molecular analyses (targeted NGS, 70 genes). We compared 15 pDC-AML at diagnosis with 21 BPDCN and 11 normal pDCs from healthy donors. CD45low CD34+ blasts were found in all cases (10-80% of medullar cells), associated with pDCs (4-36%), monocytes in 14 cases (1-10%) and cDCs (2 cases, 4.8-19%). pDCs in pDC-AML harbor a clearly different phenotype from BPDCN: CD4+ CD56- in 100% of cases, most frequently CD303+, CD304+ and CD34+; lower expression of cTCL1 and CD123 with isolated lymphoid markers (CD22/CD7/CD5) in some cases, suggesting a pre-pDC stage. In all cases, pDCs, monocytes and cDC are neoplastic since they harbor the same mutations as CD34+ blasts. RUNX1 is the most commonly mutated gene: detected in all AML with minimal differentiation (M0-AML) but not in the other cases. Despite low number of cases, the systematic association between M0-AML, RUNX1 mutations and an excess of pDC is puzzling. Further evaluation in a larger cohort is required to confirm RUNX1 mutations in pDC-AML with minimal differentiation and to investigate whether it represents a proliferation of blasts with macrophage and DC progenitor potential.


Subject(s)
Dendritic Cells , Leukemia, Myeloid, Acute , Cell Proliferation , Humans , Leukemia, Myeloid, Acute/genetics , Mutation , Phenotype
7.
Cancers (Basel) ; 12(7)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32708264

ABSTRACT

Advanced age or preexisting comorbidities have been characterized as risk factors for severe coronavirus disease 2019 (COVID-19) cases requiring hospitalization and intensive care. In recent years, clonal hematopoiesis (CH) of indeterminate potential (CHIP) has emerged as a risk factor for chronic inflammatory background and subsequent aging-associated diseases. The purpose of this study was to identify biological factors (particularly leukocyte subtypes and inflammatory markers) associated with a risk of clinical deterioration (i.e., orotracheal intubation (OTI)) and to determine whether CH was likely to influence clinical and biological behavior in patients with severe COVID-19 requiring hospitalization. Here, we describe clinical and biological features, including the screening of CHIP mutants in a well-annotated cohort of 122 hospitalized patients with a laboratory-confirmed diagnosis of COVID-19 (55% requiring OTI). We showed that elevated white blood cell counts, especially neutrophils and high C-reactive protein (CRP) levels at admission, were associated with an increased requirement of OTI. We noticed a high prevalence of CH (25%, 38%, 56%, and 82% of patients aged <60 years, 60-70 years, 70-80 years, and >80 years) compared to a retrospective cohort of patients free of hematological malignancy explored with the same pipelines (10%, 21%, 37%, and 44%). However, the existence of CH did not significantly impact clinical outcome, including OTI or death, and did not correlate with other laboratory findings.

8.
Cancers (Basel) ; 12(1)2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31905904

ABSTRACT

Acute myeloid leukemia (AML) encompasses heterogeneous entities with dismal outcomes. Intermediate and unfavorable-risk AML represent the most difficult-to-treat entities. We recently reported the benefit of the clofarabine-based consolidation (CLARA) regimen compared to the standard high-dose cytarabine (HDAC) regimen in younger AML patients. Here, we aimed at assessing the clinical significance of single-nucleotide polymorphism (SNP)-array alterations and their interactions with chemotherapy regimens. A SNP-array was successfully performed in 187 out of the 221 intent-to-treat patients (CLARA arm: n = 92 patients, HDAC arm: n = 95 patients). The CLARA regimen did not significantly improve relapse-free survival (RFS) among patients who displayed a complex karyotype when compared to the HDAC regimen (4-year RFS (4y-RFS): 36.4% vs. 18.8%, respectively; p = 0.134). Defining micro-complex karyotypes from at least four SNP-array lesions enabled us to refine and enlarge the subset of adverse patients. In such patients, the CLARA regimen significantly improved RFS compared to the HDAC regimen (4y-RFS: 44.4% vs. 13.8%, respectively; p = 0.004). From our study cohort, 8% of patients displayed TP53 mutations, which were associated with an impaired RFS (4y-RFS: 20.0% vs 43.7%; p = 0.029). In a multivariate analysis, micro-complex karyotypes remained the sole poor prognostic factor in the HDAC arm (hazard ratio (HR) = 2.324 (95% confidence interval (CI) = 1.337-4.041), p = 0.003). The SNP array represents a powerful and reproductive approach to refine adverse AML patients that may benefit from alternative consolidation regimens.

10.
Haematologica ; 103(5): 822-829, 2018 05.
Article in English | MEDLINE | ID: mdl-29472349

ABSTRACT

Assessment of minimal residual disease has emerged as a powerful prognostic factor in acute myeloid leukemia. In this study, we investigated the potential of IDH1/2 mutations as targets for minimal residual disease assessment in acute myeloid leukemia, since these mutations collectively occur in 15-20% of cases of acute myeloid leukemia and now represent druggable targets. We employed droplet digital polymerase chain reaction assays to quantify IDH1R132, IDH2R140, and IDH2R172 mutations on genomic DNA in 322 samples from 103 adult patients with primary IDH1/2 mutant acute myeloid leukemia and enrolled on Acute Leukemia French Association (ALFA) - 0701 or -0702 clinical trials. The median IDH1/2 mutant allele fraction in bone marrow samples was 42.3% (range, 8.2 - 49.9%) at diagnosis of acute myeloid leukemia, and below the detection limit of 0.2% (range, <0.2 - 39.3%) in complete remission after induction therapy. In univariate analysis, the presence of a normal karyotype, a NPM1 mutation, and an IDH1/2 mutant allele fraction <0.2% in bone marrow after induction therapy were statistically significant predictors of longer disease-free survival. In multivariate analysis, these three variables remained significantly predictive of disease-free survival. In 7/103 (7%) patients, IDH1/2 mutations persisted at high levels in complete remission, consistent with the presence of an IDH1/2 mutation in pre-leukemic hematopoietic stem cells. Five out of these seven patients subsequently relapsed or progressed toward myelodysplastic syndrome, suggesting that patients carrying the IDH1/2 mutation in a pre-leukemic clone may be at high risk of hematologic evolution.


Subject(s)
Biomarkers, Tumor/genetics , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/therapy , Mutation , Neoplasm, Residual/diagnosis , Adolescent , Adult , Aged , Combined Modality Therapy , Female , Follow-Up Studies , Humans , Incidence , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Neoplasm, Residual/epidemiology , Neoplasm, Residual/genetics , Nucleophosmin , Prognosis , Survival Rate , Young Adult
11.
Oncotarget ; 9(5): 6478-6489, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29464086

ABSTRACT

Acute myeloid leukemia (AML) with t(8;21) and inv(16), together referred as core binding factor (CBF)-AML, are recognized as unique entities. Both rearrangements share a common pathophysiology, the disruption of the CBF, and a relatively good prognosis. Experiments have demonstrated that CBF rearrangements were insufficient to induce leukemia, implying the existence of cooperating events. To explore these aberrations, we performed single nucleotide polymorphism (SNP)-array in a well-annotated cohort of 198 patients with CBF-AML. Excluding breakpoint-associated lesions, the most frequent events included loss of a sex chromosome (53%), deletions at 9q21 (12%) and 7q36 (9%) in patients with t(8;21) compared with trisomy 22 (13%), trisomy 8 (10%) and 7q36 deletions (12%) in patients with inv(16). SNP-array revealed novel recurrent genetic alterations likely to be involved in CBF-AML leukemogenesis. ZBTB7A mutations (20% of t(8;21)-AML) were shown to be a target of copy-neutral losses of heterozygosity (CN-LOH) at chromosome 19p. FOXP1 focal deletions were identified in 5% of inv(16)-AML while sequence analysis revealed that 2% carried FOXP1 truncating mutations. Finally, CCDC26 disruption was found in both subtypes (4.5% of the whole cohort) and possibly highlighted a new lesion associated with aberrant tyrosine kinase signaling in this particular subtype of leukemia.

12.
Hemasphere ; 2(1): e31, 2018.
Article in English | MEDLINE | ID: mdl-31723759

ABSTRACT

Despite major treatment improvements over the past decades, pediatric acute myeloid leukemia (AML) is still a life-threatening malignancy with relapse rates up to 30% and survival rates below 75%. A better description of the pattern of molecular aberrations in childhood AML is needed to refine prognostication in such patients. We report here the comprehensive molecular landscape using both high-throughput sequencing focused on 36 genes and ligation-dependent RT-PCR in 385 children with de novo AML enrolled in the prospective ELAM02 trial and we evaluated their prognostic significance. Seventy-six percent of patients had at least 1 mutation among the genes we screened. The most common class of mutations involved genes that control kinase signaling (61%) followed by transcription factors (16%), tumor suppressors (14%), chromatin modifiers (9%), DNA methylation controllers (8%), cohesin genes (5%), and spliceosome (3%). Moreover, a recurrent transcript fusion was detected in about a half of pediatric patients. Overall, CBF rearrangements, NPM1 and double CEBPA mutations represented 37% of the cohort and defined a favorable molecular subgroup (3 years OS: 92.1%) while NUP98 fusions, WT1, RUNX1, and PHF6 mutations (15% of the cohort) segregated into a poor molecular subgroup (3 years OS: 46.1%). KMT2A-rearrangements (21% of the cohort) were associated with an intermediate risk. Despite some overlaps, the spectrum of molecular aberrations and their prognostic significance differ between childhood and adult AML. These data have important implications to contribute in refining risk stratification of pediatric AML and show the need for further validations in independent pediatric cohorts.

13.
Eur J Haematol ; 100(1): 104-107, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29034503

ABSTRACT

ETV6 is a target of recurrent aberrations in sporadic and familial acute lymphoblastic leukemia (ALL). Here, we report on a new pedigree with a germline ETV6 mutation in which the index patient and his father developed high hyperdiploid (HeH) ALL and polycythemia vera at age 13 and 51, respectively. The index patient achieved durable complete remission without transplantation but had persistent moderate thrombocytopenia without bleeding tendency. To determine the prevalence of ETV6 alterations in HeH-ALL, we screened 81 unrelated subjects with HeH-ALL by single nucleotide polymorphism array and high-throughput sequencing for the ETV6 gene. Overall, ETV6 microdeletions and mutations were identified in 9% of cases, all of which were somatic and considered as secondary events. Apart from the index patient, no germline ETV6 aberration was identified. Finally, we reviewed the literature for ETV6 germline aberrations and predispositions to ALL.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Germ-Line Mutation , Heterozygote , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/genetics , Adolescent , DNA Mutational Analysis , Humans , Male , Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , ETS Translocation Variant 6 Protein
14.
Clin Cancer Res ; 23(20): 6325-6335, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28754818

ABSTRACT

Purpose:TP53 is a tumor-suppressor gene that functions as a regulator influencing cellular responses to DNA damage, and TP53 alterations are associated with pejorative outcome in most B-lymphoid disorders. Little is known regarding TP53 alteration in Waldenstrom's macroglobulinemia (WM).Experimental Design: Here, we have explored the incidence of TP53 alteration using Sanger sequencing and ultradeep-targeted sequencing in 125 WM and 10 immunoglobulin M (IgM) monoclonal gammopathy of undetermined significance (MGUS), along with the clinical features and the associated genomic landscape using single-nucleotide polymorphism array and mutational landscape in an integrative study.Results: Overall, we have identified alteration of TP53 locus including mutation, deletion, and copy-neutral LOH in 11.2% of WM. TP53 mutation was acquired in 7.3% of patients with WM at diagnosis, being absent in IgM MGUS, and was highly correlated to deletion 17p. No correlation with CXCR4 mutations was observed. Patients with TP53 alteration had a greater number of genomic abnormalities. Importantly, WM with TP53 alteration had a significantly shorter overall survival, particularly in symptomatic WM, and independently of the international prognostic scoring system for Waldenstrom macroglobulinemia (IPSSWM) score. Specific treatment for WM with TP53 may have to be studied. Nutlin-3a-targeted p53 signaling induced cytotoxicity preclinically, along with new compounds such as ibrutinib, PrimaMet, or CP31398 that bypass p53 pathway in WM, paving the path for future treatment-tailored options.Conclusions: Our results highlight the clinical significance of detection of TP53 alteration in WM to determine the prognosis of WM and guide the treatment choice. Clin Cancer Res; 23(20); 6325-35. ©2017 AACR.


Subject(s)
Mutation , Tumor Suppressor Protein p53/genetics , Waldenstrom Macroglobulinemia/diagnosis , Waldenstrom Macroglobulinemia/genetics , Adult , Aged , Aged, 80 and over , Apoptosis , Cell Survival/genetics , Chromosome Deletion , Chromosomes, Human, Pair 17 , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Prognosis , Protein Binding , Protein Interaction Domains and Motifs/genetics , Survival Analysis , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism , Waldenstrom Macroglobulinemia/mortality
15.
Blood ; 127(20): 2451-9, 2016 05 19.
Article in English | MEDLINE | ID: mdl-26980726

ABSTRACT

Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML.


Subject(s)
Chromosome Inversion , Chromosomes, Human, Pair 16/genetics , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 8/genetics , Core Binding Factors/genetics , DNA, Neoplasm/genetics , Leukemia, Myeloid, Acute/genetics , Mutation , Translocation, Genetic , Adolescent , Adult , Alleles , Cell Cycle Proteins/genetics , Child , Child, Preschool , Chromatin/genetics , Chromatin/ultrastructure , Chromosomal Proteins, Non-Histone/genetics , Core Binding Factor Alpha 2 Subunit/genetics , DNA Mutational Analysis , Female , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Middle Aged , Oncogene Proteins, Fusion/genetics , Prognosis , RUNX1 Translocation Partner 1 Protein , Young Adult , Cohesins
17.
Clin Cancer Res ; 22(6): 1480-8, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26490317

ABSTRACT

PURPOSE: Whole-genome sequencing has revealed MYD88 L265P and CXCR4 mutations (CXCR4(mut)) as the most prevalent somatic mutations in Waldenström macroglobulinemia. CXCR4 mutation has proved to be of critical importance in Waldenström macroglobulinemia, in part due to its role as a mechanism of resistance to several agents. We have therefore sought to unravel the different aspects of CXCR4 mutations in Waldenström macroglobulinemia. EXPERIMENTAL DESIGN: We have scanned the two coding exons of CXCR4 in Waldenström macroglobulinemia using deep next-generation sequencing and Sanger sequencing in 98 patients with Waldenström macroglobulinemia and correlated with SNP array landscape and mutational spectrum of eight candidate genes involved in TLR, RAS, and BCR pathway in an integrative study. RESULTS: We found all mutations to be heterozygous, somatic, and located in the C-terminal domain of CXCR4 in 25% of the Waldenström macroglobulinemia. CXCR4 mutations led to a truncated receptor protein associated with a higher expression of CXCR4. CXCR4 mutations pertain to the same clone as to MYD88 L265P mutations but were mutually exclusive to CD79A/CD79B mutations (BCR pathway). We identified a genomic signature in CXCR4(mut) Waldenström macroglobulinemia traducing a more complex genome. CXCR4 mutations were also associated with gain of chromosome 4, gain of Xq, and deletion 6q. CONCLUSIONS: Our study panned out new CXCR4 mutations in Waldenström macroglobulinemia and identified a specific signature associated to CXCR4(mut), characterized with complex genomic aberrations among MYD88L265P Waldenström macroglobulinemia. Our results suggest the existence of various genomic subgroups in Waldenström macroglobulinemia.


Subject(s)
Genome-Wide Association Study , Genomics , Mutation , Receptors, CXCR4/genetics , Waldenstrom Macroglobulinemia/genetics , Alleles , Amino Acid Substitution , Biomarkers , Cluster Analysis , Cytogenetic Analysis , Female , Gene Expression Profiling , Gene Expression Regulation , Genome-Wide Association Study/methods , Genomics/methods , Genotype , Humans , Immunophenotyping , Male , Phenotype , Prognosis , Receptors, CXCR4/chemistry , Receptors, CXCR4/metabolism , Transcriptome , Waldenstrom Macroglobulinemia/metabolism , Waldenstrom Macroglobulinemia/mortality
18.
Oncotarget ; 6(39): 42345-53, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26486081

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous disease. Even within the same NPM1-mutated genetic subgroup, some patients harbor additional mutations in FLT3, IDH1/2, DNMT3A or TET2. Recent studies have shown the prognostic significance of minimal residual disease (MRD) in AML but it remains to be determined which molecular markers are the most suitable for MRD monitoring. Recent advances in next-generation sequencing (NGS) have provided the opportunity to use multiple molecular markers. In this study, we used NGS technology to assess MRD in 31 AML patients enrolled in the ALFA-0701 trial and harboring NPM1 mutations associated to IDH1/2 or DNMT3A mutations. NPM1 mutation-based MRD monitoring was performed by RTqPCR. IDH1/2 and DNMT3A mutations were quantified by NGS using an Ion Torrent Proton instrument with high coverage (2 million reads per sample). The monitoringof IDH1/2 mutations showed that these mutations were reliable MRD markers that allowed the prediction of relapse in the majority of patients. Moreover, IDH1/2 mutation status predicted relapse or disease evolution in 100% of cases if we included the patient who developed myelodysplastic syndrome. In contrast, DNMT3A mutations were not correlated to the disease status, as we found that a preleukemic clone with DNMT3A mutation persisted in 40% of the patients who were in complete remission, reflecting the persistence of clonal hematopoiesis.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid/genetics , Mutation , Neoplasm, Residual/genetics , Acute Disease , Adult , Aged , Biomarkers, Tumor/genetics , DNA Methyltransferase 3A , France , High-Throughput Nucleotide Sequencing/methods , Humans , Leukemia, Myeloid/diagnosis , Middle Aged , Neoplasm Recurrence, Local , Neoplasm, Residual/diagnosis , Nuclear Proteins/genetics , Nucleophosmin , Prognosis , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Young Adult
19.
Haematologica ; 100(8): 1086-95, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25682606

ABSTRACT

The CD3(-)CD4(+) lymphoid variant of hypereosinophilic syndrome is characterized by hypereosinophilia and clonal circulating CD3(-)CD4(+) T cells. Peripheral T-cell lymphoma has been described during this disease course, and we observed in our cohort of 23 patients 2 cases of angio-immunoblastic T-cell lymphoma. We focus here on histopathological (n=12 patients) and immunophenotypic (n=15) characteristics of CD3(-)CD4(+) lymphoid variant of hypereosinophilic syndrome. Atypical CD4(+) T cells lymphoid infiltrates were found in 10 of 12 CD3(-)CD4(+) L-HES patients, in lymph nodes (n=4 of 4 patients), in skin (n=9 of 9) and other extra-nodal tissues (gut, lacrymal gland, synovium). Lymph nodes displayed infiltrates limited to the interfollicular areas or even an effacement of nodal architecture, associated with proliferation of arborizing high endothelial venules and increased follicular dendritic cell meshwork. Analysis of 2 fresh skin samples confirmed the presence of CD3(-)CD4(+) T cells. Clonal T cells were detected in at least one tissue in 8 patients, including lymph nodes (n=4 of 4): the same clonal T cells were detected in blood and in at least one biopsy, with a maximum delay of 23 years between samples. In the majority of cases, circulating CD3(-)CD4(+) T cells were CD2(hi) (n=9 of 14), CD5(hi) (n=12 of 14), and CD7(-)(n=4 of 14) or CD7(low) (n=10 of 14). Angio-immunoblastic T-cell lymphoma can also present with CD3(-)CD4(+) T cells; despite other common histopathological and immunophenotypic features, CD10 expression and follicular helper T-cell markers were not detected in lymphoid variant of hypereosinophilic syndrome patients, except in both patients who developed angio-immunoblastic T-cell lymphoma, and only at T-cell lymphoma diagnosis. Taken together, persistence of tissular clonal T cells and histopathological features define CD3(-)CD4(+) lymphoid variant of hypereosinophilic syndrome as a peripheral indolent clonal T-cell lymphoproliferative disorder, which should not be confused with angio-immunoblastic T-cell lymphoma.


Subject(s)
CD3 Complex/metabolism , CD4 Antigens/metabolism , Clonal Evolution , Hypereosinophilic Syndrome/metabolism , Hypereosinophilic Syndrome/pathology , Immunophenotyping , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology , Adolescent , Adult , Aged , Bone Marrow/metabolism , Bone Marrow/pathology , Diagnosis, Differential , Female , Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor , Humans , Hypereosinophilic Syndrome/diagnosis , Hypereosinophilic Syndrome/therapy , Immunohistochemistry , Lymph Nodes/metabolism , Lymph Nodes/pathology , Lymphoma, T-Cell, Peripheral/diagnosis , Lymphoma, T-Cell, Peripheral/metabolism , Lymphoma, T-Cell, Peripheral/pathology , Male , Middle Aged , Skin/metabolism , Skin/pathology , Young Adult
20.
Br J Haematol ; 167(4): 506-13, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25160558

ABSTRACT

Bing-Neel syndrome (BNS), a rare neurological syndrome associated with Waldenström macroglobulinaemia (WM), is a direct involvement of the central nervous system by lymphoplasmacytoid cells characterized with an adverse prognostic. The MYD88 L265P mutation has been identified in the vast majority of patients with WM. The diagnosis of BNS is often challenging because of the variety of clinical presentations associated with difficult histological techniques. We hypothesized that identification of MYD88 L265P mutation in the cerebrospinal fluid (CSF) would contribute to the diagnosis of BNS in addition to imaging, flow cytometry and cytology. We identified MYD88 L265P mutation in the CSF and the bone marrow of all cases of BNS using quantitative polymerase chain reaction qPCR and Sanger sequencing. Copy neutral loss of heterozygosity including MYD88 was observed in one case. No mutation of CXCR4, CD79A and CD79B was observed in parallel. We further showed that monitoring the quantitative expression of MYD88 L265P mutation might be a useful molecular tool to monitor response to chemotherapy using qPCR. In conclusion, identification of MYD88 L265P mutation might be a new molecular-based biomarker tool to add to the diagnostic and monitoring armamentarium for BNS.


Subject(s)
Heterozygote , Mutation, Missense , Myeloid Differentiation Factor 88/genetics , Neoplasm Proteins/genetics , Nervous System Diseases/diagnosis , Nervous System Diseases/genetics , Waldenstrom Macroglobulinemia/genetics , Adult , Aged , Bone Marrow/metabolism , Bone Marrow/pathology , Humans , Male , Middle Aged , Myeloid Differentiation Factor 88/metabolism , Neoplasm Proteins/metabolism , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/pathology , Prospective Studies , Syndrome , Waldenstrom Macroglobulinemia/cerebrospinal fluid , Waldenstrom Macroglobulinemia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...