Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 3253, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332181

ABSTRACT

Strain engineering beyond substrate limitation of colossal magnetoresistant thin (La0.6Pr0.4)0.7Ca0.3MnO3 (LPCMO) films on LaAlO3-buffered SrTiO3 (LAO/STO) substrates has been demonstrated using metalorganic aerosol deposition technique. By growing partially relaxed 7-27 nm thick heteroepitaxial LAO buffer layers on STO a perfect lattice matching to the LPCMO has been achieved. As a result, strain-free heteroepitaxial 10-20 nm thick LPCMO/LAO/STO films with bulk-like ferromagnetic metallic ground state were obtained. Without buffer the coherently strained thin LPCMO/STO and LPCMO/LAO films were insulating and weakly magnetic. The reason for the optimized magnetotransport in strain-free LPCMO films was found to be a large octahedral Mn-O-Mn bond angle φOOR ~ 166-168° as compared to the significantly smaller one of φOOR ~ 152-156° determined for the tensile (LPCMO/STO) and compressively (LPCMO/LAO) strained films.

2.
Phys Rev Lett ; 126(21): 217202, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34114835

ABSTRACT

CeIrSn with a quasikagome Ce lattice in the hexagonal basal plane is a strongly valence fluctuating compound, as we confirm by hard x-ray photoelectron spectroscopy and inelastic neutron scattering, with a high Kondo temperature of T_{K}∼480 K. We report a negative in-plane thermal expansion α/T below 2 K, which passes through a broad minimum near 0.75 K. Volume and a-axis magnetostriction for B∥a are markedly negative at low fields and change sign before a sharp metamagnetic anomaly at 6 T. These behaviors are unexpected for Ce-based intermediate valence systems, which should feature positive expansivity. Rather they point towards antiferromagnetic correlations at very low temperatures. This is supported by muon spin relaxation measurements down to 0.1 K, which provide microscopic evidence for a broad distribution of internal magnetic fields. Comparison with isostructural CeRhSn suggests that these antiferromagnetic correlations emerging at T≪T_{K} result from geometrical frustration.

3.
Phys Rev Lett ; 125(9): 097203, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32915615

ABSTRACT

Measurements of the magnetic Grüneisen parameter (Γ_{B}) and specific heat on the Kitaev material candidate α-RuCl_{3} are used to access in-plane field and temperature dependence of the entropy up to 12 T and down to 1 K. No signatures corresponding to phase transitions are detected beyond the boundary of the magnetically ordered region, but only a shoulderlike anomaly in Γ_{B}, involving an entropy increment as small as 10^{-5}Rlog2. These observations put into question the presence of a phase transition between the purported quantum spin liquid and the field-polarized state of α-RuCl_{3}. We show theoretically that at low temperatures Γ_{B} is sensitive to crossings in the lowest excitations within gapped phases, and identify the measured shoulderlike anomaly as being of such origin. Exact diagonalization calculations demonstrate that the shoulderlike anomaly can be reproduced in extended Kitaev models that gain proximity to an additional phase at finite field without entering it. We discuss manifestations of this proximity in other measurements.

4.
Phys Rev Lett ; 120(23): 237202, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29932706

ABSTRACT

Temperature-pressure phase diagram of the Kitaev hyperhoneycomb iridate ß-Li_{2}IrO_{3} is explored using magnetization, thermal expansion, magnetostriction, and muon spin rotation measurements, as well as single-crystal x-ray diffraction under pressure and ab initio calculations. The Néel temperature of ß-Li_{2}IrO_{3} increases with the slope of 0.9 K/GPa upon initial compression, but the reduction in the polarization field H_{c} reflects a growing instability of the incommensurate order. At 1.4 GPa, the ordered state breaks down upon a first-order transition, giving way to a new ground state marked by the coexistence of dynamically correlated and frozen spins. This partial freezing in the absence of any conspicuous structural defects may indicate the classical nature of the resulting pressure-induced spin liquid, an observation paralleled to the increase in the nearest-neighbor off-diagonal exchange Γ under pressure.

5.
Rev Sci Instrum ; 88(8): 083903, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28863703

ABSTRACT

For the characterization of novel quantum phases of matter, it is often required to study materials under multi-extreme conditions, in particular down to very low temperatures and in very high magnetic fields. We developed the world's smallest high-resolution capacitive dilatometer suitable for temperatures down to 10 mK and usage in high magnetic fields up to 37.5 T. Despite the extreme miniaturization, the capacitive dilatometer can resolve length changes down to 0.01 Å. This is an unprecedented resolution in a capacitive dilatometer of this compact size. Many cryogenic devices have limited space. Due to the extremely reduced cell size (3 cm3, 12 g), implementation or new applications in many of these sample space lacking devices are now possible. As an important example, the minute device can now be rotated in any standard cryostat, including dilution refrigerators or the commercial physical property measurement system. The present super compact design provides also for high resolution thermal expansion and magnetostriction measurements in a 15.2 mm diameter tube, enabling its use in the 32 mm bore, 37.5 T Bitter magnet at the High Field Magnet Laboratory in Nijmegen down to a temperature of 300 mK.

6.
Phys Rev Lett ; 118(10): 107204, 2017 Mar 10.
Article in English | MEDLINE | ID: mdl-28339268

ABSTRACT

In the heavy-fermion metal CePdAl, long-range antiferromagnetic order coexists with geometric frustration of one-third of the Ce moments. At low temperatures, the Kondo effect tends to screen the frustrated moments. We use magnetic fields B to suppress the Kondo screening and study the magnetic phase diagram and the evolution of the entropy with B employing thermodynamic probes. We estimate the frustration by introducing a definition of the frustration parameter based on the enhanced entropy, a fundamental feature of frustrated systems. In the field range where the Kondo screening is suppressed, the liberated moments tend to maximize the magnetic entropy and strongly enhance the frustration. Based on our experiments, this field range may be a promising candidate to search for a quantum spin liquid.

7.
Sci Rep ; 6: 35362, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27748402

ABSTRACT

Thorough mixing of the starting materials is the first step of a crystal growth procedure. This holds true for almost any standard technique, whereas the intentional separation of educts is considered to be restricted to a very limited number of cases. Here we show that single crystals of α-Li2IrO3 can be grown from separated educts in an open crucible in air. Elemental lithium and iridium are oxidized and transported over a distance of typically one centimeter. In contrast to classical vapor transport, the process is essentially isothermal and a temperature gradient of minor importance. Single crystals grow from an exposed condensation point placed in between the educts. The method has also been applied to the growth of Li2RuO3, Li2PtO3 and ß-Li2IrO3. A successful use of this simple and low cost technique for various other materials is anticipated.

8.
Rev Sci Instrum ; 87(7): 073903, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27475567

ABSTRACT

Thermal expansion and magnetostriction are directional dependent thermodynamic quantities. For the characterization of novel quantum phases of matter, it is required to study materials under multi-extreme conditions, in particular, down to very low temperatures, in very high magnetic fields or under high pressure. We developed a miniaturized capacitive dilatometer suitable for temperatures down to 20 mK and usage in high magnetic fields, which exerts a large spring force between 40 to 75 N on the sample. This corresponds to a uniaxial stress up to 3 kbar for a sample with cross section of (0.5 mm)(2). We describe design and performance test of the dilatometer which resolves length changes with high resolution of 0.02 Å at low temperatures. The miniaturized device can be utilized in any standard cryostat, including dilution refrigerators or the commercial physical property measurement system.

9.
Phys Rev Lett ; 116(22): 226402, 2016 Jun 03.
Article in English | MEDLINE | ID: mdl-27314732

ABSTRACT

Bilayer strontium ruthenate Sr_{3}Ru_{2}O_{7} displays pronounced non-Fermi liquid behavior at magnetic fields around 8 T, applied perpendicular to the ruthenate planes, which previously has been associated with an itinerant metamagnetic quantum critical end point (QCEP). We focus on the magnetic Grüneisen parameter Γ_{H}, which is the most direct probe to characterize field-induced quantum criticality. We confirm quantum critical scaling due to a putative two-dimensional QCEP near 7.845(5) T, which is masked by two ordered phases A and B, identified previously by neutron scattering. In addition, we find evidence for a QCEP at 7.53(2) T and determine the quantum critical regimes of both instabilities and the effect of their superposition.

10.
Phys Rev Lett ; 113(22): 227001, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25494081

ABSTRACT

Our comprehensive study on EuFe_{2}As_{2} reveals a dramatic reduction of magnetic detwinning fields compared to other AFe_{2}As_{2} (A=Ba, Sr, Ca) iron pnictides by indirect magnetoelastic coupling of the Eu^{2+} ions. We find that only ∼0.1 T are sufficient for persistent detwinning below the local Eu^{2+} ordering; above T_{Eu}=19 K, higher fields are necessary. Even after the field is switched off, a significant imbalance of twin domains remains constant up to the structural and electronic phase transition (190 K). This persistent detwinning provides the unique possibility to study the low temperature electronic in-plane anisotropy of iron pnictides without applying any symmetry-breaking external force.

11.
Nat Mater ; 13(4): 356-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24651428

ABSTRACT

When magnetic order is suppressed by frustrated interactions, spins form a highly correlated fluctuating 'spin liquid' state down to low temperatures. The magnetic order of local moments can also be suppressed when they are fully screened by conduction electrons through the Kondo effect. Thus, the combination of strong geometrical frustration and Kondo screening may lead to novel types of quantum phase transition. We report low-temperature thermodynamic measurements on the frustrated Kondo lattice Pr2Ir2O7, which exhibits a chiral spin liquid state below 1.5 K as a result of the frustrated interaction between Ising 4f local moments and their interplay with Ir conduction electrons. Our results provide a first clear example of zero-field quantum critical scaling that emerges in a spin liquid state of a highly frustrated metal.

12.
Phys Rev Lett ; 111(11): 116401, 2013 Sep 13.
Article in English | MEDLINE | ID: mdl-24074108

ABSTRACT

Bicritical points, at which two distinct symmetry-broken phases become simultaneously unstable, are typical for spin-flop metamagnetism. Interestingly, the heavy-fermion compound YbAgGe also possesses such a bicritical point (BCP) with a low temperature T(BCP)≈0.3 K at a magnetic field of µH(BCP)≈4.5 T. In its vicinity, YbAgGe exhibits anomalous behavior that we attribute to the influence of a quantum bicritical point that is close in parameter space yet can be reached by tuning T(BCP) further to zero. Using high-resolution measurements of the magnetocaloric effect, we demonstrate that the magnetic Grüneisen parameter ΓH indeed both changes sign and diverges as required for quantum criticality. Moreover, ΓH displays a characteristic scaling behavior but only on the low-field side H≲H(BCP), indicating a pronounced asymmetry with respect to the critical field. We speculate that the small value of T(BCP) is related to the geometric frustration of the Kondo lattice of YbAgGe.

13.
Phys Rev Lett ; 110(25): 256403, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23829750

ABSTRACT

We investigate the magnetic field dependent thermopower, thermal conductivity, resistivity, and Hall effect in the heavy fermion metal YbRh2Si2. In contrast to reports on thermodynamic measurements, we find in total three transitions at high fields, rather than a single one at 10 T. Using the Mott formula together with renormalized band calculations, we identify Lifshitz transitions as their origin. The predictions of the calculations show that all experimental results rely on an interplay of a smooth suppression of the Kondo effect and the spin splitting of the flat hybridized bands.

14.
Phys Rev Lett ; 110(17): 176402, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23679749

ABSTRACT

We report measurements of the electrical and thermal transport on the hexagonal heavy-fermion metal YbAgGe for temperatures T ≥ 40 mK and in magnetic fields H∥ab up to 14 T. This distorted kagome-lattice system displays a series of magnetic states and a quantum critical point at H(c) = 4.5 T. The Lorenz ratio L(T)/L0 displays a marked reduction only close to H(c). A T-linear contribution below 120 mK, present at all different fields, allows us to extrapolate the Lorenz ratio towards T = 0. At the critical field this yields L/L0 = 0.92±0.03, suggesting a violation of the Wiedemann-Franz law due to strong inelastic scattering.

15.
J Phys Condens Matter ; 25(9): 094003, 2013 Mar 06.
Article in English | MEDLINE | ID: mdl-23399984

ABSTRACT

We employed femtosecond time- and angle-resolved photoelectron spectroscopy to analyze the response of the electronic structure of the 122 Fe-pnictide parent compounds Ba/EuFe(2)As(2) and optimally doped BaFe(1.85)Co(0.15)As(2) near the Γ point to optical excitation by an infrared femtosecond laser pulse. We identify pronounced changes of the electron population within several 100 meV above and below the Fermi level, which we explain as a combination of (i) coherent lattice vibrations, (ii) a hot electron and hole distribution, and (iii) transient modifications of the chemical potential. The responses of the three different materials are very similar. In the coherent response we identify three modes at 5.6, 3.3, and 2.6 THz. While the highest frequency mode is safely assigned to the A(1g) mode, the other two modes require a discussion in comparison to the literature. Employing a transient three temperature model we deduce from the transient evolution of the electron distribution a rather weak, momentum-averaged electron-phonon coupling quantified by values for λ<ω(2)> between 30 and 70 meV(2). The chemical potential is found to present pronounced transient changes reaching a maximum of 15 meV about 0.6 ps after optical excitation and is modulated by the coherent phonons. This change in the chemical potential is particularly strong in a multiband system like the 122 Fe-pnictide compounds investigated here due to the pronounced variation of the electron density of states close to the equilibrium chemical potential.

16.
Phys Rev Lett ; 110(6): 067001, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23432292

ABSTRACT

We study the in-plane anisotropy of the thermoelectric power and electrical resistivity on detwinned single crystals of isovalent substituted EuFe(2)(As(1-x)P(x))(2). Compared to the resistivity anisotropy, the thermopower anisotropy is more pronounced and clearly visible already at temperatures much above the structural and magnetic phase transitions. Most remarkably, the thermopower anisotropy changes sign below the structural transition. This is associated with the interplay of two contributions due to anisotropic scattering and orbital polarization, which dominate at high and low temperatures, respectively.

17.
Phys Rev Lett ; 110(7): 076402, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-25166387

ABSTRACT

The electronic structure of the honeycomb lattice iridates Na(2)IrO(3) and Li(2)IrO(3) has been investigated using resonant inelastic x-ray scattering (RIXS). Crystal-field-split d-d excitations are resolved in the high-resolution RIXS spectra. In particular, the splitting due to noncubic crystal fields, derived from the splitting of j(eff)=3/2 states, is much smaller than the typical spin-orbit energy scale in iridates, validating the applicability of j(eff) physics in A(2)IrO(3). We also find excitonic enhancement of the particle-hole excitation gap around 0.4 eV, indicating that the nearest-neighbor Coulomb interaction could be large. These findings suggest that both Na(2)IrO(3) and Li(2)IrO(3) can be described as spin-orbit Mott insulators, similar to the square lattice iridate Sr(2)IrO(4).

18.
Phys Rev Lett ; 111(10): 107003, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-25166697

ABSTRACT

Quantum criticality in the normal and superconducting states of the heavy-fermion metal CeCoIn5 is studied by measurements of the magnetic Grüneisen ratio ΓH and specific heat in different field orientations and temperatures down to 50 mK. A universal temperature over magnetic field scaling of ΓH in the normal state indicates a hidden quantum critical point at zero field. Within the superconducting state, the quasiparticle entropy at constant temperature increases upon reducing the field towards zero, providing additional evidence for zero-field quantum criticality.

19.
Phys Rev Lett ; 110(23): 237002, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-25167524

ABSTRACT

By systematic investigations of the magnetic, transport, and thermodynamic properties of single crystals of EuFe(2)(As(1-x)P(x))(2) (0≤x≤1), we explore the complex interplay of superconductivity and Eu(2+) magnetism. Below 30 K, two magnetic transitions are observed for all P substituted crystals, suggesting a revision of the phase diagram. In addition to the canted A-type antiferromagnetic order of Eu(2+) at ∼20 K, a spin glass transition is discovered at lower temperatures. Most remarkably, the reentrant spin glass state of EuFe(2)(As(1-x)P(x))(2) coexists with superconductivity around x≈0.2.

20.
Phys Rev Lett ; 109(11): 116402, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-23005654

ABSTRACT

The heavy-fermion superconductor CeCoIn(5) displays an additional transition within its superconducting (SC) state, whose nature is characterized by high-precision studies of the isothermal field dependence of the entropy, derived from combined specific heat and magnetocaloric effect measurements at temperatures T≥100 mK and fields H≤12 T aligned along different directions. For any of these conditions, we do not observe an additional entropy contribution upon tuning at constant temperature by magnetic field from the homogeneous SC into the presumed Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) SC state. By contrast, for H∥[100] a reduction of entropy was found that quantitatively agrees with the expectation for spin-density-wave order without FFLO superconductivity. Our data exclude the formation of a FFLO state in CeCoIn(5) for out-of-plane field directions, where no spin-density-wave order exists.

SELECTION OF CITATIONS
SEARCH DETAIL
...