Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Front Biosci (Landmark Ed) ; 29(4): 153, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38682198

ABSTRACT

Oxidative stress often affects the structure and metabolism of lipids, which in the case of polyunsaturated free fatty acids (PUFAs) leads to a self-catalysed chain reaction of lipid peroxidation (LPO). The LPO of PUFAs leads to the formation of various aldehydes, such as malondialdehyde, 4-hydroxynonenal (4-HNE), 4-hydroxyhexenal, and 4-oxo-2-nonenal. Among the reactive aldehydes, 4-HNE is the major bioactive product of LPO, which has a high affinity for binding to proteins. This review briefly discusses the available information on the applicability of assessment options for 4-HNE and its protein adducts determined by immunosorbent assay (the 4-HNE-ELISA) in patients with various diseases known to be associated with oxidative stress, LPO, and 4-HNE. Despite the differences in the protocols applied and the antibodies used, all studies confirmed the usefulness of the 4-HNE-ELISA for research purposes. Since different protocols and the antibodies used could give different values when applied to the same samples, the 4-HNE-ELISA should be combined with other complementary analytical methods to allow comparisons between the values obtained in patients and in healthy individuals. Despite large variations, the studies reviewed in this paper have mostly shown significantly increased levels of 4-HNE-protein adducts in the samples obtained from patients when compared to healthy individuals. As with any other biomarker studied in patients, it is preferred to perform not only a single-time analysis but measurements at multiple time points to monitor the dynamics of the occurrence of oxidative stress and the systemic response to the disease causing it. This is especially important for acute diseases, as individual levels of 4-HNE-protein adducts in blood can fluctuate more than threefold within a few days depending on the state of health, as was shown for the COVID-19 patients.


Subject(s)
Aldehydes , Enzyme-Linked Immunosorbent Assay , Lipid Peroxidation , Oxidative Stress , Humans , Aldehydes/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Biomarkers/metabolism , Biomarkers/blood
2.
J Biomed Sci ; 31(1): 28, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438941

ABSTRACT

BACKGROUND: Ticks are vectors of various pathogens, including tick-borne encephalitis virus causing TBE and bacteria such as Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum causing e.g. viral-bacterial co-infections (TBE + LB/HGA), which pose diagnostic and therapeutic problems. Since these infections are usually accompanied by inflammation and oxidative stress causing metabolic modifications, including phospholipids, the aim of the study was to assess the level of polyunsaturated fatty acids and their metabolism (ROS- and enzyme-dependent) products in the blood plasma of patients with TBE and TBE + LB/HGA before and after pharmacotherapy. METHODS: The total antioxidant status was determined using 2,20-azino-bis-3-ethylbenzothiazolin-6-sulfonic acid. The phospholipid and free fatty acids were analysed by gas chromatography. Lipid peroxidation was estimated by measuring small molecular weight reactive aldehyde, malondialdehyde and neuroprostanes. The reactive aldehyde was determined using gas chromatography coupled with mass spectrometry. The activity of enzymes was examined spectrophotometrically. An analysis of endocannabinoids and eicosanoids was performed using a Shimadzu UPLC system coupled with an electrospray ionization source to a Shimadzu 8060 Triple Quadrupole system. Receptor expression was measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS: The reduced antioxidant status as a result of infection was accompanied by a decrease in the level of phospholipid arachidonic acid (AA) and docosahexaenoic acid (DHA) in TBE, an increase in DHA in co-infection and in free DHA in TBE with an increase in the level of lipid peroxidation products. The enhanced activity of enzymes metabolizing phospholipids and free PUFAs increased the level of endocannabinoids and eicosanoids, while decreased 15-PGJ2 and PGE2 was accompanied by activation of granulocyte receptors before pharmacotherapy and only tending to normalize after treatment. CONCLUSION: Since classical pharmacotherapy does not prevent disorders of phospholipid metabolism, the need to support treatment with antioxidants may be suggested.


Subject(s)
Anaplasma phagocytophilum , Borrelia burgdorferi , Coinfection , Encephalitis Viruses, Tick-Borne , Ticks , Humans , Animals , Lipid Metabolism , Antioxidants , Endocannabinoids , Bacteria , Aldehydes , Eicosanoids , Phospholipids
3.
Free Radic Biol Med ; 212: 375-383, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38182071

ABSTRACT

Autophagy, which is responsible for removing damaged molecules, prevents their accumulation in cells, thus maintaining intracellular homeostasis. It is also responsible for removing the effects of oxidative stress, so its activation takes place during increased reactive oxygen species (ROS) generation and lipid peroxidation. Therefore, the aim of this review was to summarize all the available knowledge about the effect of protein modifications by lipid peroxidation products on autophagy activation and the impact of this interaction on the functioning of cells. This review shows that reactive aldehydes (including 4-hydroxynonenal and malondialdehyde), either directly or by the formation of adducts with autophagic proteins, can activate or prevent autophagy, depending on their concentration. This effect relates not only to the initial stages of autophagy, when 4-hydroxynonenal and malondialdehyde affect the levels of proteins involved in autophagy initiation and phagophore formation, but also to the final stage, degradation, when reactive aldehydes, by binding to the active center of cathepsins, inactivate their proteolytic functions. Moreover, this review also shows how little research exists on analyzing the impact of lipid peroxidation products and their protein adducts on autophagy. Such knowledge could be used in the therapy of diseases related to autophagy disorders.


Subject(s)
Aldehydes , Autophagy , Lipid Peroxidation , Aldehydes/metabolism , Malondialdehyde/metabolism , Oxidative Stress , Proteins/metabolism
4.
Sci Rep ; 13(1): 22302, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38102403

ABSTRACT

Considerable attention has been devoted to investigating the biological activity of microalgal extracts, highlighting their capacity to modulate cellular metabolism. This study aimed to assess the impact of Nannochloropsis oceanica lipid extract on the phospholipid profile of human keratinocytes subjected to UVB radiation. The outcomes revealed that treatment of keratinocytes with the lipid extract from microalgae led to a reduction in sphingomyelin (SM) levels, with a more pronounced effect observed in UVB-irradiated cells. Concomitantly, there was a significant upregulation of ceramides CER[NDS] and CER[NS], along with increased sphingomyelinase activity. Pathway analysis further confirmed that SM metabolism was the most significantly affected pathway in both non-irradiated and UVB-irradiated keratinocytes treated with the microalgal lipid extract. Additionally, the elevation in alkylacylPE (PEo) and diacylPE (PE) species content observed in UVB-irradiated keratinocytes following treatment with the microalgal extract suggested the potential induction of pro-survival mechanisms through autophagy in these cells. Conversely, a noteworthy reduction in LPC content in UVB-irradiated keratinocytes treated with the extract, indicated the anti-inflammatory properties of the lipid extract obtained from microalgae. However, to fully comprehend the observed alterations in the phospholipid profile of UVB-irradiated keratinocytes, further investigations are warranted to identify the specific fraction of compounds responsible for the activity of the Nannochloropsis oceanica extract.


Subject(s)
Microalgae , Humans , Lipidomics , Skin/radiation effects , Keratinocytes/metabolism , Phospholipids/metabolism , Ultraviolet Rays
5.
Int J Mol Sci ; 24(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37762413

ABSTRACT

Although the COVID-19 pandemic has ended, it is important to understand the pathology of severe SARS-CoV-2 infection associated with respiratory failure and high mortality. The plasma proteome, including protein modification by lipid peroxidation products in COVID-19 survivors (COVID-19; n = 10) and deceased individuals (CovDeath; n = 10) was compared in samples collected upon admission to the hospital, when there was no difference in their status, with that of healthy individuals (Ctr; n = 10). The obtained results show that COVID-19 development strongly alters the expression of proteins involved in the regulation of exocytosis and platelet degranulation (top 20 altered proteins indicated by analysis of variance; p-value (False Discovery Rate) cutoff at 5%). These changes were most pronounced in the CovDeath group. In addition, the levels of 4-hydroxynonenal (4-HNE) adducts increased 2- and 3-fold, whereas malondialdehyde (MDA) adducts increased 7- and 2.5-fold, respectively, in COVID-19 and CovDeath groups. Kinases and proinflammatory proteins were particularly affected by these modifications. Protein adducts with 15-deoxy-12,14-prostaglandin J2 (15d-PGJ2) were increased 2.5-fold in COVID-19 patients, including modifications of proteins such as p53 and STAT3, whereas CovDeath showed a decrease of approximately 60% compared with Ctr. This study for the first time demonstrates the formation of lipid metabolism products-protein adducts in plasma from survived and deceased COVID-19 patients, significantly distinguishing them, which may be a predictor of the course of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , Pandemics , SARS-CoV-2 , Lipid Peroxidation , Exocytosis
6.
J Pharmacol Exp Ther ; 387(2): 170-179, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37652708

ABSTRACT

Excessive daily exposure of human skin to natural UVA radiation leads to impaired redox homeostasis in epidermal keratinocytes, resulting in changes in their proteome. Commonly used antioxidants usually exhibit protection in a narrowed range, which makes it necessary to combine their effects. Therefore, the aim of this study was to analyze the protective effect of cannabigerol (CBG) and 3-O-ethyl ascorbic acid (EAA), used separately and together, on the proteomic profile of UVA irradiated keratinocytes. Proteomic analysis with the use of the Q Exactive HF mass spectrometer, combined with biostatistic tests, performed on UVA-irradiated keratinocytes indicated enhanced and lowered expression of 186 and 160 proteins, respectively. CBG treatment after UVA irradiation reduced these numbers to 110 upregulated and 49 downregulated proteins, while EAA eliminated all these changes. CBG completely eliminated the UV-induced effect on the expression of pro-inflammatory proteins and significantly increased the level of proteins responsible for cellular locomotion. On the other hand, CBG reduced the level of UVA-induced 4-hydroxynonenal protein adducts fivefold, whereas EAA had no effect on this modification. At the same time, CBG and EAA did not modify the expression/structure of proteins in relation to the nonirradiated control keratinocytes in the case of an unaccompanied use or slightly modified the protein profile when used in a mixture. The combined protective effects of CBG on protein structure and EAA on protein expression profile allowed us to obtain a wider protection of cells against UVA radiation, compared with when the compounds were used alone. SIGNIFICANCE STATEMENT: Proteomic analysis of human skin cells allows to conclude that 3-O-ethyl ascorbic acid eliminates UVA-induced changes in the expression of keratinocyte proteins, while cannabigerol significantly reduces 4-hydroxynonenal protein adducts. The combined protective effects of cannabigerol on protein structure and of 3-O-ethyl ascorbic acid on protein expression profile allowed to obtain a wider protection of cells against UVA radiation.

7.
Int J Mol Sci ; 24(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37511067

ABSTRACT

The exposure of skin cells to UV radiation leads to redox imbalances and inflammation. The present study investigates a lipid extract obtained from the microalga Nannochloropsis oceanica as a potential protector against UVB-induced disturbances in human keratinocytes. The findings of this study show that the Nannochloropsis oceanica extract significantly inhibits UVB-induced cell death while concurrently decreasing the activity of pro-oxidative enzymes (xanthine and NADPH oxidase) and reducing the levels of ROS. Furthermore, the extract augments the activity of antioxidant enzymes (superoxide dismutases and catalase), as well as glutathione/thioredoxin-dependent systems in UVB-irradiated cells. The expression of Nrf2 factor activators (p62, KAP1, p38) was significantly elevated, while no impact was observed on Nrf2 inhibitors (Keap1, Bach1). The antioxidant activity of the extract was accompanied by the silencing of overexpressed membrane transporters caused by UVB radiation. Furthermore, the Nannochloropsis oceanica extract exhibited anti-inflammatory effects in UVB-irradiated keratinocytes by decreasing the levels of TNFα, 8-iso prostaglandin F2, and 4-HNE-protein adducts. In conclusion, the lipid components of Nannochloropsis oceanica extract effectively prevent the pro-oxidative and pro-inflammatory effects of UVB radiation in keratinocytes, thereby stabilizing the natural metabolism of skin cells.


Subject(s)
Microalgae , Stramenopiles , Humans , Microalgae/metabolism , Oxidative Stress , Kelch-Like ECH-Associated Protein 1/metabolism , Ultraviolet Rays/adverse effects , NF-E2-Related Factor 2/metabolism , Keratinocytes/metabolism , Antioxidants/pharmacology , Stramenopiles/metabolism , Lipids/pharmacology
8.
Redox Biol ; 63: 102729, 2023 07.
Article in English | MEDLINE | ID: mdl-37150149

ABSTRACT

Psoriasis, one of the most frequent immune-mediated skin diseases, is manifested by numerous psoriatic lessons on the skin caused by excessive proliferation and keratinization of epidermal cells. These disorders of keratinocyte metabolism are caused by a pathological interaction with the cells of the immune system, including lymphocytes, which in psoriasis are also responsible for systemic inflammation. This is accompanied by oxidative stress, which promotes the formation of lipid peroxidation products, including reactive aldehydes and isoprostanes, which are additional pro-inflammatory signaling molecules. Therefore, the presented review is focused on highlighting changes that occur during psoriasis development at the level of lipid peroxidation products, including 4-hydroxynonenal, 4-oxononenal, malondialdehyde, and acrolein, and their influence on protein structures. Furthermore, we will examine inducing agents of cellular functioning, as well as intercellular signaling. These lipid peroxidation products can form adducts with a variety of proteins with different functions in the body, including proteins within skin cells and cells of the immune system. This is especially true in autoimmune diseases such as psoriasis. For example, these changes concern proteins involved in maintaining redox homeostasis or pro-inflammatory signaling. Therefore, the formation of such adducts should attract attention, especially during the design of preventive cosmetics or anti-psoriasis therapies.


Subject(s)
Aldehydes , Psoriasis , Humans , Lipid Peroxidation , Aldehydes/metabolism , Malondialdehyde/metabolism , Proteins/metabolism , Oxidation-Reduction
9.
Vitam Horm ; 121: 247-270, 2023.
Article in English | MEDLINE | ID: mdl-36707136

ABSTRACT

Ascorbic acid, as one of the basic exogenous vitamins, is known for its tremendous antioxidant properties. This review has been prepared to show not only the importance of ascorbic acid as a free radical scavenger, but also to summarize its antioxidant action based on other mechanisms, including activation of intracellular antioxidant systems. Ascorbic acid interacts with small molecule antioxidants, including tocopherol, glutathione and thioredoxin, but also can stimulate the biosynthesis and activation of antioxidant enzymes, such as superoxide dismutase, catalase or glutathione peroxidase. Moreover, ascorbic acid promotes the activity of several transcription factors (Nrf2, Ref-1, AP-1), which enables the expression of genes encoding antioxidant proteins. Additionally, it supports the action of other exogenous antioxidants, mainly polyphenols. In this connection, both DNA, protein and lipids are protected against oxidation. Although ascorbic acid has strong antioxidant properties, it can also have pro-oxidant effects in the presence of free transition metals. However, its role in prevention of DNA mutation and cellular apoptosis, especially in relation to cancer cells is controversial.


Subject(s)
Antioxidants , Ascorbic Acid , Humans , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Oxidation-Reduction , Superoxide Dismutase/metabolism , Glutathione/metabolism , Oxidative Stress
10.
Redox Biol ; 57: 102489, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36198205

ABSTRACT

Cannabidiol (CBD), the major non-psychoactive phytocannabinoid of Cannabis sativa L., is one of the most studied compounds in pharmacotherapeutic approaches to treat oxidative stress-related diseases such as cardiovascular, metabolic, neurodegenerative, and neoplastic diseases. The literature data to date indicate the possibility of both antioxidant and pro-oxidative effects of CBD. Thus, the mechanism of action of this natural compound in the regulation of nuclear factor 2 associated with erythroid 2 (Nrf2), which plays the role of the main cytoprotective regulator of redox balance and inflammation under oxidative stress conditions, seems to be particularly important. Moreover, Nrf2 is strongly correlated with the cellular neoplastic profile and malignancy, which in turn is critical in determining the cellular response induced by CBD under pathophysiological conditions. This paper summarizes the CBD-mediated pathways of regulation of the Nrf2 system by altering the expression and modification of both proteins directly involved in Nrf2 transcriptional activity and proteins involved in the relationship between Nrf2 and the nuclear factor kappa B (NF-κB) which is another redox-sensitive transcription factor.

11.
Antioxidants (Basel) ; 11(10)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36290716

ABSTRACT

Ascorbic acid, as a one of the basic exogenous vitamins, occurs in the body in the form of ascorbate, known for its strong antioxidant and anti-inflammatory properties. The presented review shows not only the importance of ascorbate as a free radical scavenger but also summarizes its antioxidant action based on other mechanisms, including the activation of intracellular antioxidant systems and its effect on the NFκB/TNFα pathway and apoptosis. Ascorbate interacts with small-molecule antioxidants, including tocopherol, glutathione, and thioredoxin; it can also stimulate biosynthesis and the activation of antioxidant enzymes, such as superoxide dismutase, catalase, or glutathione peroxidase. Moreover, ascorbate promotes the activity of transcription factors (Nrf2, Ref-1, AP-1), which enables the expression of genes encoding antioxidant proteins. Additionally, it supports the action of other exogenous antioxidants, mainly polyphenols. In this regard, both DNA, proteins, and lipids are protected against oxidation, leading to an inflammatory reaction and even cell death. Although ascorbate has strong antioxidant properties, it can also have pro-oxidant effects in the presence of free transition metals. However, its role in the prevention of DNA mutation, inflammation, and cell apoptosis, especially in relation to cancer cells, is controversial.

12.
Front Biosci (Landmark Ed) ; 27(4): 119, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35468678

ABSTRACT

BACKGROUND: It is commonly believed that cancer development is irreversible, organ-specific as well as systemic malignant disorder, often associated with harmful oxidative stress and inflammation. However, there are also well-documented cases of spontaneous cancer regression, the causative mechanisms of which are not understood. It is known that inflammation is a negative pathophysiological process that may support the development of cancer, but it is also believed that the immune system as well as oxidative stress play important roles in prevention of cancer development and defense against tumor progression. Hence, in animal models spontaneous regression of cancer could be mediated by rapid inflammatory response of granulocytes, acting against cancer mostly as innate immune response. In addition, the administration of granulocytes at the site of solid tumors can lead to tumor regression or can slow down tumor growth and extend the overall survival of animals. In both cases, similar to the radiotherapy, surgery and various chemotherapies, oxidative stress occurs generating lipid peroxidation product 4-hydroxynonenal (4-HNE). This "second messenger of free radicals" acts as growth regulating signaling molecule that exerts relatively selective cytotoxicity against cancer cells. CONCLUSIONS: We hypothesize that abundant inflammation and metabolic changes caused by cancer and oxidative stress producing of 4-HNE may be crucial mechanisms for spontaneous cancer regression.


Subject(s)
Aldehydes , Neoplasms , Aldehydes/metabolism , Animals , Granulocytes/metabolism , Granulocytes/pathology , Inflammation , Neoplasms/metabolism , Oxidative Stress/physiology
13.
Int J Mol Sci ; 23(8)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35457192

ABSTRACT

Despite the increasing number of patients suffering from tick-borne encephalitis (TBE), Lyme disease, and their co-infection, the mechanisms of the development of these diseases and their effects on the human body are still unknown. Therefore, the aim of this study was to evaluate the changes in the proteomic profile of human plasma induced by the development of TBE and to compare it with changes in TBE patients co-infected with other tick-borne pathogens. The results obtained by proteomic analysis using a nanoLC-Q Exactive HF mass spectrometer showed that the most highly elevated groups of proteins in the plasma of TBE patients with co-infection were involved in the pro-inflammatory response and protein degradation, while the antioxidant proteins and factors responsible for protein biosynthesis were mainly downregulated. These results were accompanied by enhanced GSH- and 4-HNE-protein adducts formation, observed in TBE and co-infected patients at a higher level than in the case of patients with only TBE. In conclusion, the differences in the proteomic profiles between patients with TBE and co-infected patients indicate that these diseases are significantly diverse and, consequently, require different treatment, which is particularly important for further research, including the development of novel diagnostics tools.


Subject(s)
Coinfection , Encephalitis, Tick-Borne , Flavivirus Infections , Lyme Disease , Humans , Proteomics
14.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36613554

ABSTRACT

ABC transporters are expressed in skin cells to protect them against harmful xenobiotics. Moreover, these transmembrane proteins have a number of additional functions that ensure skin homeostasis. This review summarizes the current knowledge about the role of specific ABC proteins in the skin, including multi-drug resistance transporters (MDR1/3), the transporter associated with antigen processing 1/2 (TAP1/2), the cystic fibrosis transmembrane conductance regulator (CFTR), sulfonylurea receptors (SUR1/2), and the breast cancer resistance protein (BCRP). Additionally, the effect of UV radiation on ABC transporters is shown. The exposure of skin cells to UV radiation often leads to increased activity of ABC transporters-as has been observed in the case of MDRs, TAPs, CFTR, and BCRP. A different effect of oxidative stress has been observed in the case of mitochondrial SURs. However, the limited data in the literature-as indicated in this article-highlights the limited number of experimental studies dealing with the role of ABC transporters in the physiology and pathophysiology of skin cells and the skin as a whole. At the same time, the importance of such knowledge in relation to the possibility of daily exposure to UV radiation and xenobiotics, used for both skin care and the treatment of its diseases, is emphasized.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Ultraviolet Rays , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Ultraviolet Rays/adverse effects , Xenobiotics , Neoplasm Proteins/metabolism , Sulfonylurea Receptors
15.
Oxid Med Cell Longev ; 2021: 7624389, 2021.
Article in English | MEDLINE | ID: mdl-34691360

ABSTRACT

The development of psoriasis is associated with the consequences of oxidative stress and inflammation leading to metabolic changes locally, in the skin cells, and systemically, in the blood. Therefore, the aim of this study was to analyze the effect of psoriasis vulgaris (PsV) and psoriatic arthritis (PsA) on the basal plasma/keratinocyte levels of matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs), and angiogenesis factors, as well as to evaluate the effect of CBD on these parameters in keratinocytes isolated from psoriatic/healthy individuals with and without in vitro irradiation by UVB. A quantitative chemiluminescent method of detection based on an ELISA protocol and zymography technique was used during analysis. It was shown that activity levels of MMP-9 and TIMP-2 in PsA plasma were higher than in PsV. Changes in the proteolytic activity were accompanied by an increase in markers of angiogenesis (angiopoietin-2, HGF, VEGF, TNFα, PDGF, FGF), where in the specific case of angiopoietin-2 and TNFα, the overexpression in PsV was significantly stronger than in PsA. CBD application to keratinocytes partially restored levels of MMP-1/2/3/7 and TIMP-1/2 (in an effect which was particularly enhanced by UVB irradiation), as well as levels of the examined angiogenic factors except TNFα (levels of which were increased in psoriatic keratinocytes and decreased in healthy keratinocytes). Presented results indicate that CBD may be suggested as an antiangiogenic factor that reduces the proinflammatory action of UVB in psoriatic keratinocytes and partially has a protective effect for healthy keratinocytes.


Subject(s)
Angiogenesis Inducing Agents/therapeutic use , Cannabidiol/therapeutic use , Keratinocytes/drug effects , Matrix Metalloproteinases/drug effects , Psoriasis/drug therapy , Adult , Angiogenesis Inducing Agents/pharmacology , Cannabidiol/pharmacology , Case-Control Studies , Female , Humans , Male
16.
Sci Rep ; 11(1): 20666, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34667212

ABSTRACT

UV radiation is known to induce a multiple changes in the metabolism of skin-building cells, what can affect the functioning not only neighboring cells, but also, following signal transduction releasing into the blood vessels, the entire body. Therefore, the aim of this study was to analyze the proteomic disturbances occurred in plasma of chronically UVA/UVB irradiated rats and define the effect on these changes of skin topically applied cannabidiol (CBD). Obtained results showed significant changes in the expression of numerous anti-inflammatory and signaling proteins including: NFκB inhibitor, 14-3-3 protein, protein kinase C, keratin, and protein S100 after UV irradiation and CBD treatment. Moreover, the effects of UVA and UVB were manifested by increased level of lipid peroxidation products-protein adducts formation. CBD partially prevented all of these changes, but in a various degree depending on the UV radiation type. Moreover, topical treatment with CBD resulted in the penetration of CBD into the blood and, as a consequence, in direct modifications to the plasma protein structure by creating CBD adducts with molecules, such as proline-rich protein 30, transcription factor 19, or N-acetylglucosamine-6-sulfatase, what significantly changed the activity of these proteins. In conclusion, it may be suggested that CBD applied topically may be an effective compound against systemic UV-induced oxidative stress, but its effectiveness requires careful analysis of CBD's effects on other tissues of the living organism.


Subject(s)
Cannabidiol/administration & dosage , Proteome/radiation effects , Skin/drug effects , Skin/radiation effects , Administration, Topical , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/radiation effects , Lipid Peroxidation/drug effects , Lipid Peroxidation/radiation effects , Male , Mice, Nude , Proteome/metabolism , Proteomics/methods , Rats , Signal Transduction/drug effects , Signal Transduction/radiation effects , Skin/metabolism , Ultraviolet Rays
17.
J Pharm Biomed Anal ; 205: 114359, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34509137

ABSTRACT

Psoriasis is one of the most common human skin diseases, although its development is not limited to one tissue, but is associated with autoimmune reactions throughout the body. Overproduction of pro-inflammatory cytokines and growth factors systemically stimulates the proliferation of skin cells, which manifests as excessive exfoliation of the epidermis, and/or arthritis, as well as other comorbidities such as insulin resistance, metabolic syndrome, hypertension, and depression. Thus, there is a great need for a thorough analysis of the pathophysiology of psoriatic patients, including classical methods, such as spectrophotometry, chromatography, or Western blot, and also novel omics approaches such as lipidomics and proteomics. Moreover, the extensive pathophysiology forces increased research examining biological changes in both skin cells, and systemically. A wide range of techniques involved in lipidomic research based on a combination of mass spectrometry and different types of chromatography (RP-LC-QTOF-MS/MS, HILIC-QTOF-MS/MS or RP-LC-QTRAP-MS/MS), have allowed comprehensive assessment of lipid modification in psoriatic skin and provided new insight into the role of lipids and their mechanism of action in psoriasis. Moreover, proteomic analysis using gel-nanoLC-OrbiTrap-MS/MS, as well as MALDI-TOF/TOF techniques facilitates the description of panels of enzymes involved in lipidome modifications, and the response of the endocannabinoid system to metabolic changes. Psoriasis is known to alter the expression of proteins that are involved in the inflammatory and antioxidant response, as well as protein biosynthesis, degradation, as well as cell proliferation and apoptosis. Knowledge of changes in the lipidomic and proteomic profile will not only allow the understanding of psoriasis pathophysiology, but also facilitate proper and early diagnosis and effective pharmacotherapy.


Subject(s)
Psoriasis , Tandem Mass Spectrometry , Chromatography, Liquid , Humans , Proteomics , Skin
18.
Int J Mol Sci ; 22(18)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34576119

ABSTRACT

Although apoptosis of keratinocytes has been relatively well studied, there is a lack of information comparing potentially proapoptotic treatments for healthy and diseased skin cells. Psoriasis is a chronic autoimmune-mediated skin disease manifested by patches of hyperproliferative keratinocytes that do not undergo apoptosis. UVB phototherapy is commonly used to treat psoriasis, although this has undesirable side effects, and is often combined with anti-inflammatory compounds. The aim of this study was to analyze if cannabidiol (CBD), a phytocannabinoid that has anti-inflammatory and antioxidant properties, may modify the proapoptotic effects of UVB irradiation in vitro by influencing apoptotic signaling pathways in donor psoriatic and healthy human keratinocytes obtained from the skin of five volunteers in each group. While CBD alone did not have any major effects on keratinocytes, the UVB treatment activated the extrinsic apoptotic pathway, with enhanced caspase 8 expression in both healthy and psoriatic keratinocytes. However, endoplasmic reticulum (ER) stress, characterized by increased expression of caspase 2, was observed in psoriatic cells after UVB irradiation. Furthermore, decreased p-AKT expression combined with increased 15-d-PGJ2 level and p-p38 expression was observed in psoriatic keratinocytes, which may promote both apoptosis and necrosis. Application of CBD partially attenuated these effects of UVB irradiation both in healthy and psoriatic keratinocytes, reducing the levels of 15-d-PGJ2, p-p38 and caspase 8 while increasing Bcl2 expression. However, CBD increased p-AKT only in UVB-treated healthy cells. Therefore, the reduction of apoptotic signaling pathways by CBD, observed mainly in healthy keratinocytes, suggests the need for further research into the possible beneficial effects of CBD.


Subject(s)
Apoptosis/drug effects , Cannabidiol/pharmacology , Keratinocytes/cytology , Keratinocytes/radiation effects , Psoriasis/pathology , Ultraviolet Rays , Biomarkers/metabolism , Cell Line , Dinoprostone/pharmacology , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Keratinocytes/drug effects , NF-E2-Related Factor 2/metabolism , Prostaglandin D2/analogs & derivatives , Prostaglandin D2/pharmacology , Signal Transduction/drug effects , Signal Transduction/radiation effects
19.
Antioxidants (Basel) ; 10(8)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34439508

ABSTRACT

Natural antioxidants effectively counteract changes caused by UV radiation in human skin cells. However, their action is limited due to their lipo/hydrophilicity. Therefore, the aim of this study was to analyze the mutual protective action of hydrophilic ascorbic acid and partially lipophilic rutin against UVA/UVB-induced changes in membranes phospholipid and endocannabinoid system in keratinocytes and fibroblasts. Obtained results clearly showed that, despite the stronger antioxidant properties of ascorbic acid, the lipid membranes were more effectively protected against UV-induced oxidation by rutin, including changes in phospholipid fatty acid levels, prevention against reactive aldehydes formation and endocannabinoids degradation. Ascorbic acid more strongly prevented UV-induced endocannabinoid receptors expression in fibroblasts, especially CB1. However, the combined action of used antioxidants resulted in the greatest cytoprotective effect, which was evident in the inflammatory marker TNFα down-regulation and increased cell viability following cell irradiation. The applied mixture of antioxidants showed a stronger protective in relation to membrane phospholipids in keratinocytes and in the endocannabinoid system in fibroblasts. In conclusion, it can be suggested that combined antioxidant capacities of ascorbic acid and rutin protects against lipid peroxidation but also decreases the UV-induced inflammation by direct interaction with the endocannabinoid system, thus increasing skin cell viability.

20.
Redox Biol ; 46: 102074, 2021 10.
Article in English | MEDLINE | ID: mdl-34298466

ABSTRACT

Hydrogen peroxide (H2O2) is widely used in clinical practice due to its antiseptic properties and its ability to heal wounds. However, due to its involvement in the formation of ROS, H2O2 causes several side effects, including disorders of the metabolism of skin cells and the development of chronic inflammation mediated by oxidative stress. Therefore, this study evaluated the effects of cannabidiol (CBD), a phytocannabinoid known for its antioxidant and anti-inflammatory properties, on the proteome of keratinocyte membranes exposed to H2O2. Overall, the hydrogen peroxide caused the levels of several proteins to increase, while the treatment with CBD prevented these changes. Analysis of the protein-protein interaction network showed that the significant changes mainly involved proteins with important roles in the proteasomal activity, protein folding processes (regulatory subunit of the proteasome 26S 6A, beta proteasome subunit type 1, chaperonin 60 kDa), protein biosynthesis (40S ribosomal proteins S16, S2 and ubiquitin-S27a), regulation of the redox balance (carbonyl reductase [NADPH] 1 and NAD(P)H [quinone] 1 dehydrogenase) and cell survival (14-3-3 theta protein). Additionally, CBD reduced the total amount of MDA, 4-HNE and 4-ONE-protein adducts. Therefore, we conclude that CBD partially prevents the changes induced by hydrogen peroxide by reducing oxidative stress and maintaining proteostasis networks. Moreover, our results indicate that combination therapy with CBD may bring a promising approach in the clinical use of hydrogen peroxide by preventing its pro-oxidative and pro-inflammatory effect through potential participation of CBD in membrane mediated molecular signaling.


Subject(s)
Cannabidiol , Hydrogen Peroxide , Keratinocytes , Membrane Proteins , Oxidative Stress , Proteostasis
SELECTION OF CITATIONS
SEARCH DETAIL
...