Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Front Cell Neurosci ; 16: 920075, 2022.
Article in English | MEDLINE | ID: mdl-37124866

ABSTRACT

ClC-3 Cl-/H+ exchangers are expressed in multiple endosomal compartments and likely modify intra-endosomal pH and [Cl-] via the stoichiometrically coupled exchange of two Cl- ions and one H+. We studied pain perception in Clcn3-/- mice and found that ClC-3 not only modifies the electrical activity of peripheral nociceptors but is also involved in inflammatory processes in the spinal cord. We demonstrate that ClC-3 regulates the number of Na v and K v ion channels in the plasma membrane of dorsal root ganglion (DRG) neurons and that these changes impair the age-dependent decline in excitability of sensory neurons. To distinguish the role of ClC-3 in Cl-/H+ exchange from its other functions in pain perception, we used mice homozygous for the E281Q ClC-3 point mutation (Clcn3E281Q/E281Q ), which completely eliminates transport activity. Since ClC-3 forms heterodimers with ClC-4, we crossed these animals with Clcn4 -/- to obtain mice completely lacking in ClC-3-associated endosomal chloride-proton transport. The electrical properties of Clcn3 E281Q/E281Q /Clcn4-/- DRG neurons were similar to those of wild-type cells, indicating that the age-dependent adjustment of neuronal excitability is independent of ClC-3 transport activity. Both Clcn3-/- and Clcn3E281Q/E281Q /Clcn4 -/- animals exhibited microglial activation in the spinal cord, demonstrating that competent ClC-3 transport is needed to maintain glial cell homeostasis. Our findings illustrate how reduced Cl-/H+ exchange contributes to inflammatory responses and demonstrate a role for ClC-3 in the homeostatic regulation of neuronal excitability beyond its function in endosomal ion balance.

3.
eNeuro ; 8(6)2021.
Article in English | MEDLINE | ID: mdl-34772693

ABSTRACT

Excitatory amino acid transporters (EAATs) remove glutamate from the synaptic cleft. In the retina, EAAT1 and EAAT2 are considered the major glutamate transporters. However, it has not yet been possible to determine how EAAT5 shapes the retinal light responses because of the lack of a selective EAAT5 blocker or EAAT5 knock-out (KO) animal model. In this study, EAAT5 was found to be expressed in a punctate manner close to release sites of glutamatergic synapses in the mouse retina. Light responses from retinae of wild-type (WT) and of a newly generated model with a targeted deletion of EAAT5 (EAAT5-/-) were recorded in vitro using multielectrode arrays (MEAs). Flicker resolution was considerably lower in EAAT5-/- retinae than in WT retinae. The close proximity to the glutamate release site makes EAAT5 an ideal tool to improve temporal information processing in the retina by controlling information transfer at glutamatergic synapses.


Subject(s)
Excitatory Amino Acid Transporter 5 , Retina , Amino Acid Transport System X-AG , Animals , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 2 , Excitatory Amino Acid Transporter 5/genetics , Glutamic Acid , Mice
4.
Invest Ophthalmol Vis Sci ; 61(13): 37, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33252632

ABSTRACT

Purpose: In RP, photoreceptors degenerate. Retinal prostheses are considered a suitable strategy to restore vision. In animal models of RP, a pathologic rhythmic activity seems to compromise the efficiency of retinal ganglion cell stimulation by an electrical prosthesis. We, therefore, strove to eliminate this pathologic activity. Methods: Electrophysiologic recordings of local field potentials and spike activity of retinal ganglion cells were obtained in vitro from retinae of wild-type and rd10 mice using multielectrode arrays. Retinae were stimulated electrically. Results: The efficiency of electrical stimulation was lower in rd10 retina than in wild-type retina and this was highly correlated with the presence of oscillations in retinal activity. Glycine and GABA, as well as the benzodiazepines diazepam, lorazepam, and flunitrazepam, abolished retinal oscillations and, most important, increased the efficiency of electrical stimulation to values similar to those in wild-type retina. Conclusions: Treatment of patients with these benzodiazepines may offer a way to improve the performance of retinal implants in cases with poor implant proficiency. This study may open the way to a therapy that supports electrical stimulation by prostheses with pharmacologic treatment.


Subject(s)
Disease Models, Animal , Electric Stimulation Therapy , Retina/physiopathology , Retinal Ganglion Cells/drug effects , Retinitis Pigmentosa/physiopathology , Action Potentials/drug effects , Animals , Benzodiazepines/pharmacology , Female , Glycine/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Retinal Ganglion Cells/physiology , gamma-Aminobutyric Acid/pharmacology
5.
Front Neurosci ; 13: 367, 2019.
Article in English | MEDLINE | ID: mdl-31114470

ABSTRACT

Background: Significant progress toward the recovery of useful vision in blind patients with severe degenerative retinal diseases caused by photoreceptor death has been achieved with the development of visual prostheses that stimulate the retina electrically. However, currently used prostheses do not provide feedback about the retinal activity before and upon stimulation and do not adjust to changes during the remodeling processes in the retina. Both features are desirable to improve the efficiency of the electrical stimulation (ES) therapy offered by these devices. Accordingly, devices that not only enable ES but at the same time provide information about the retinal activity are beneficial. Given the above, a bidirectional communication strategy, in which inner retinal cells are stimulated and the output neurons of the retina, the ganglion cells, are recorded using penetrating microelectrode arrays (MEAs) is proposed. Methods: Custom-made penetrating MEAs with four silicon-based shanks, each one with three or four iridium oxide electrodes specifically designed to match retinal dimensions were used to record the activity of light-adapted wildtype mice retinas and degenerated retinas from rd10 mice in vitro. In addition, responses to high potassium concentration and to light stimulation in wildtype retinas were examined. Furthermore, voltage-controlled ES was performed. Results: The spiking activity of retinal ganglion cells (RGCs) was recorded at different depths of penetration inside the retina. Physiological responses during an increase of the extracellular potassium concentration and phasic and tonic responses during light stimulation were captured. Moreover, pathologic rhythmic activity was recorded from degenerated retinas. Finally, ES of the inner retina and simultaneous recording of the activity of RGCs was accomplished. Conclusion: The access to different layers of the retina with penetrating electrodes while recording at the same time the spiking activity of RGCs broadens the use and the field of action of multi-shank and multi-site penetrating MEAs for retinal applications. It enables a bidirectional strategy to stimulate inner retinal cells electrically and to record from the spiking RGCs simultaneously (BiMEA). This opens the possibility of a feedback loop system to acknowledge the success of ES carried out by retinal prostheses.

SELECTION OF CITATIONS
SEARCH DETAIL