Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Cells ; 13(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891079

ABSTRACT

The transmembrane proteoglycan syndecan-4 is known to be involved in the hypertrophic response to pressure overload. Although multiple downstream signaling pathways have been found to be involved in this response in a syndecan-4-dependent manner, there are likely more signaling components involved. As part of a larger syndecan-4 interactome screening, we have previously identified MLP as a binding partner to the cytoplasmic tail of syndecan-4. Interestingly, many human MLP mutations have been found in patients with hypertrophic (HCM) and dilated cardiomyopathy (DCM). To gain deeper insight into the role of the syndecan-4-MLP interaction and its potential involvement in MLP-associated cardiomyopathy, we have here investigated the syndecan-4-MLP interaction in primary adult rat cardiomyocytes and the H9c2 cell line. The binding of syndecan-4 and MLP was analyzed in total lysates and subcellular fractions of primary adult rat cardiomyocytes, and baseline and differentiated H9c2 cells by immunoprecipitation. MLP and syndecan-4 localization were determined by confocal microscopy, and MLP oligomerization was determined by immunoblotting under native conditions. Syndecan-4-MLP binding, as well as MLP self-association, were also analyzed by ELISA and peptide arrays. Our results showed that MLP-WT and syndecan-4 co-localized in many subcellular compartments; however, their binding was only detected in nuclear-enriched fractions of isolated adult cardiomyocytes. In vitro, syndecan-4 bound to MLP at three sites, and this binding was reduced in some HCM-associated MLP mutations. While MLP and syndecan-4 also co-localized in many subcellular fractions of H9c2 cells, these proteins did not bind at baseline or after differentiation into cardiomyocyte-resembling cells. Independently of syndecan-4, mutated MLP proteins had an altered subcellular localization in H9c2 cells, compared to MLP-WT. The DCM- and HCM-associated MLP mutations, W4R, L44P, C58G, R64C, Y66C, K69R, G72R, and Q91L, affected the oligomerization of MLP with an increase in monomeric at the expense of trimeric and tetrameric recombinant MLP protein. Lastly, two crucial sites for MLP self-association were identified, which were reduced in most MLP mutations. Our data indicate that the syndecan-4-MLP interaction was present in nuclear-enriched fractions of isolated adult cardiomyocytes and that this interaction was disrupted by some HCM-associated MLP mutations. MLP mutations were also linked to changes in MLP oligomerization and self-association, which may be essential for its interaction with syndecan-4 and a critical molecular mechanism of MLP-associated cardiomyopathy.


Subject(s)
Myocytes, Cardiac , Protein Binding , Syndecan-4 , Animals , Humans , Rats , Cell Line , Myocytes, Cardiac/metabolism , Syndecan-4/metabolism , Syndecan-4/genetics
2.
Int J Cardiol ; 409: 132212, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38806112

ABSTRACT

BACKGROUND: >40% of infants with Alström Syndrome (AS) present with a transient, severe cardiomyopathy in the first months of life, with apparent recovery in survivors. One in five individuals then develop a later-onset cardiomyopathy but wide clinical variability is observed, even within the same family. The rationale for this study is to provide a comprehensive evaluation of the cardiovascular phenotype in adults with AS. METHODS: Adults attending the National Centre for AS in England were studied. All patients underwent biochemical, 12- lead electrocardiography, echocardiography, and cardiovascular magnetic resonance imaging. RESULTS: 47 adults with AS (64% male; mean age 33 years; 66% white British) were studied. Seven (15%) survived infantile cardiomyopathy and 23 (49%) developed adult-onset cardiomyopathy. Conventional risk factors for cardiovascular disease were present in 39 (83%). Abnormalities were present on biomarkers in 16 (34%), ECG 30 (64%), echocardiography 19 (40%) and CMR 31 (66%). Coronary artery imaging was performed in six (13%), with abnormalities in two. Cardiac, renal, and liver markers were more often impaired in older patients, with impaired left ventricular ejection fraction, reduced global longitudinal strain and late enhancement. 6 (13%) had severe pulmonary hypertension (mean pulmonary artery pressure 46 mmHg) due to left heart disease on invasive testing. CONCLUSION: Cardiomyopathy is common in adults with AS, complicated in a significant proportion by atherosclerotic coronary artery disease and restrictive cardiomyopathy, confirmed on CMR and invasive testing. With advancing age, cardiovascular complications are compounded by contemporaneous renal and liver disease.


Subject(s)
Alstrom Syndrome , Phenotype , Humans , Male , Female , Adult , Alstrom Syndrome/complications , Alstrom Syndrome/genetics , Alstrom Syndrome/physiopathology , Middle Aged , Young Adult , Adolescent , Electrocardiography , Echocardiography , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/physiopathology
3.
Biomedicines ; 12(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38790949

ABSTRACT

Desmoglein-2 mutations are detected in 5-10% of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC). Endurance training accelerates the development of the ARVC phenotype, leading to earlier arrhythmic events. Homozygous Dsg2 mutant mice develop a severe ARVC-like phenotype. The phenotype of heterozygous mutant (Dsg2mt/wt) or haploinsufficient (Dsg20/wt) mice is still not well understood. To assess the effects of age and endurance swim training, we studied cardiac morphology and function in sedentary one-year-old Dsg2mt/wt and Dsg20/wt mice and in young Dsg2mt/wt mice exposed to endurance swim training. Cardiac structure was only occasionally affected in aged Dsg20/wt and Dsg2mt/wt mice manifesting as small fibrotic foci and displacement of Connexin 43. Endurance swim training increased the right ventricular (RV) diameter and decreased RV function in Dsg2mt/wt mice but not in wild types. Dsg2mt/wt hearts showed increased ventricular activation times and pacing-induced ventricular arrhythmia without obvious fibrosis or inflammation. Preload-reducing therapy during training prevented RV enlargement and alleviated the electrophysiological phenotype. Taken together, endurance swim training induced features of ARVC in young adult Dsg2mt/wt mice. Prolonged ventricular activation times in the hearts of trained Dsg2mt/wt mice are therefore a potential mechanism for increased arrhythmia risk. Preload-reducing therapy prevented training-induced ARVC phenotype pointing to beneficial treatment options in human patients.

4.
Curr Cardiol Rep ; 26(6): 545-560, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38607539

ABSTRACT

PURPOSE OF REVIEW: Fabry Disease (FD) is a rare lysosomal storage disorder characterised by multiorgan accumulation of glycosphingolipid due to deficiency in the enzyme α-galactosidase A. Cardiac sphingolipid accumulation triggers various types of arrhythmias, predominantly ventricular arrhythmia, bradyarrhythmia, and atrial fibrillation. Arrhythmia is likely the primary contributor to FD mortality with sudden cardiac death, the most frequent cardiac mode of death. Traditionally FD was seen as a storage cardiomyopathy triggering left ventricular hypertrophy, diastolic dysfunction, and ultimately, systolic dysfunction in advanced disease. The purpose of this review is to outline the current evidence exploring novel mechanisms underlying the arrhythmia substrate. RECENT FINDINGS: There is growing evidence that FD cardiomyopathy is a primary arrhythmic disease with each stage of cardiomyopathy (accumulation, hypertrophy, inflammation, and fibrosis) contributing to the arrhythmia substrate via various intracellular, extracellular, and environmental mechanisms. It is therefore important to understand how these mechanisms contribute to an individual's risk of arrhythmia in FD. In this review, we outline the epidemiology of arrhythmia, pathophysiology of arrhythmogenesis, risk stratification, and cardiac therapy in FD. We explore how advances in conventional cardiac investigations performed in FD patients including 12-lead electrocardiography, transthoracic echocardiography, and cardiac magnetic resonance imaging have enabled early detection of pro-arrhythmic substrate. This has allowed for appropriate risk stratification of FD patients. This paves the way for future work exploring the development of therapeutic initiatives and risk prediction models to reduce the burden of arrhythmia.


Subject(s)
Arrhythmias, Cardiac , Fabry Disease , Fabry Disease/physiopathology , Fabry Disease/complications , Humans , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/etiology , Death, Sudden, Cardiac/etiology , Electrocardiography , alpha-Galactosidase , Risk Assessment
5.
J Physiol ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345865

ABSTRACT

Androgenic anabolic steroids (AAS) are commonly abused by young men. Male sex and increased AAS levels are associated with earlier and more severe manifestation of common cardiac conditions, such as atrial fibrillation, and rare ones, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Clinical observations suggest a potential atrial involvement in ARVC. Arrhythmogenic right ventricular cardiomyopathy is caused by desmosomal gene defects, including reduced plakoglobin expression. Here, we analysed clinical records from 146 ARVC patients to identify that ARVC is more common in males than females. Patients with ARVC also had an increased incidence of atrial arrhythmias and P wave changes. To study desmosomal vulnerability and the effects of AAS on the atria, young adult male mice, heterozygously deficient for plakoglobin (Plako+/- ), and wild type (WT) littermates were chronically exposed to 5α-dihydrotestosterone (DHT) or placebo. The DHT increased atrial expression of pro-hypertrophic, fibrotic and inflammatory transcripts. In mice with reduced plakoglobin, DHT exaggerated P wave abnormalities, atrial conduction slowing, sodium current depletion, action potential amplitude reduction and the fall in action potential depolarization rate. Super-resolution microscopy revealed a decrease in NaV 1.5 membrane clustering in Plako+/- atrial cardiomyocytes after DHT exposure. In summary, AAS combined with plakoglobin deficiency cause pathological atrial electrical remodelling in young male hearts. Male sex is likely to increase the risk of atrial arrhythmia, particularly in those with desmosomal gene variants. This risk is likely to be exaggerated further by AAS use. KEY POINTS: Androgenic male sex hormones, such as testosterone, might increase the risk of atrial fibrillation in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), which is often caused by desmosomal gene defects (e.g. reduced plakoglobin expression). In this study, we observed a significantly higher proportion of males who had ARVC compared with females, and atrial arrhythmias and P wave changes represented a common observation in advanced ARVC stages. In mice with reduced plakoglobin expression, chronic administration of 5α-dihydrotestosterone led to P wave abnormalities, atrial conduction slowing, sodium current depletion and a decrease in membrane-localized NaV 1.5 clusters. 5α-Dihydrotestosterone, therefore, represents a stimulus aggravating the pro-arrhythmic phenotype in carriers of desmosomal mutations and can affect atrial electrical function.

6.
Geroscience ; 46(2): 1989-1999, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37782438

ABSTRACT

Alström syndrome (AS) is an ultra-rare disorder characterised by early-onset multi-organ dysfunction, such as insulin resistance, obesity, dyslipidaemia, and renal and cardiovascular disease. The objective is to explore whether AS is a disease of accelerated ageing and whether changes over time on echocardiography could reflect accelerated cardiac ageing. Cross-sectional measurement of Phenoage and retrospective analysis of serial echocardiography were performed between March 2012 and November 2022. The setting is a single national tertiary service jointly run by health service and patient charity. Forty-five adult patients aged over 16 years were included, 64% were male and 67% of White ethnicity. The median Phenoage was 48 years (interquartile range [IQR]: 35-72) in the 34 patients for whom this was calculable, which was significantly higher than the median chronological age of 29 years (IQR: 22-39, p<0.001). Phenoage was higher than chronological age in 85% (N=29) of patients, with a median difference of +18 years (IQR: +4, +34). On echocardiography, significant decreases were observed over time in left ventricular (LV) size at end-diastole (average of 0.046 cm per year, p<0.001) and end-systole (1.1% per year, p=0.025), with significant increase in posterior wall thickness at end-diastole (0.009 cm per year, p=0.008). LV systolic function measured by global longitudinal strain reduced (0.34 percentage points per year, p=0.020) and E/e'lat increased (2.5% per year, p=0.019). Most AS patients display a higher Phenoage compared to chronological age. Cardiac changes in AS patients were also reflective of accelerated ageing, with a reduction in LV size and increased wall thickening. AS may be a paradigm disease for premature ageing.


Subject(s)
Alstrom Syndrome , Ventricular Dysfunction, Left , Humans , Male , Aged , Female , Retrospective Studies , Alstrom Syndrome/diagnostic imaging , Cross-Sectional Studies , Diastole , Echocardiography , Aging
7.
Nat Hum Behav ; 8(2): 190-193, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37989864

Subject(s)
Awards and Prizes , Names , Humans
8.
Biophys Rev ; 15(3): 321-327, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37396442

ABSTRACT

In this correspondence, we highlight the risk of sudden cardiac death associated with undiagnosed cardiomyopathies. Life-threatening arrhythmias, which underlie sudden cardiac death, can be triggered by high-intensity exercise. It raises the question whether, and if so, how athletes should be screened for cardiomyopathies. The example of practice from Italy is discussed. We also briefly discuss novel developments, such as wearable biosensors and machine learning, which could be applied to screening for cardiomyopathies in future.

9.
Sci Rep ; 13(1): 12137, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37495732

ABSTRACT

Activation of cardiac fibroblasts and differentiation to myofibroblasts underlies development of pathological cardiac fibrosis, leading to arrhythmias and heart failure. Myofibroblasts are characterised by increased α-smooth muscle actin (α-SMA) fibre expression, secretion of collagens and changes in proliferation. Transforming growth factor-beta (TGF-ß) and increased mechanical stress can initiate myofibroblast activation. Reversibility of the myofibroblast phenotype has been observed in murine cells but has not been explored in human cardiac fibroblasts. In this study, chronically activated adult primary human ventricular cardiac fibroblasts and human induced pluripotent stem cell derived cFbs (hiPSC-cFbs) were used to investigate the potential for reversal of the myofibroblast phenotype using either subculture on soft substrates or TGF-ß receptor inhibition. Culture on softer plates (25 or 2 kPa Young's modulus) did not alter proliferation or reduce expression of α-SMA and collagen 1. Similarly, culture of myofibroblasts in the presence of TGF-ß inhibitor did not reverse myofibroblasts back to a quiescent phenotype. Chronically activated hiPSC-cFbs also showed attenuated response to TGF-ß receptor inhibition and inability to reverse to quiescent fibroblast phenotype. Our data demonstrate substantial loss of TGF-ß signalling plasticity as well as a loss of feedback from the surrounding mechanical environment in chronically activated human myofibroblasts.


Subject(s)
Induced Pluripotent Stem Cells , Myofibroblasts , Adult , Humans , Mice , Animals , Myofibroblasts/metabolism , Cells, Cultured , Induced Pluripotent Stem Cells/metabolism , Fibroblasts/metabolism , Phenotype , Transforming Growth Factor beta/metabolism , Cell Differentiation , Actins/metabolism , Transforming Growth Factor beta1/genetics
10.
Int J Mol Sci ; 24(12)2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37373141

ABSTRACT

Cardiac fibroblasts' (FBs) and cardiomyocytes' (CMs) behaviour and morphology are influenced by their environment such as remodelling of the myocardium, thus highlighting the importance of biomaterial substrates in cell culture. Biomaterials have emerged as important tools for the development of physiological models, due to the range of adaptable properties of these materials, such as degradability and biocompatibility. Biomaterial hydrogels can act as alternative substrates for cellular studies, which have been particularly key to the progression of the cardiovascular field. This review will focus on the role of hydrogels in cardiac research, specifically the use of natural and synthetic biomaterials such as hyaluronic acid, polydimethylsiloxane and polyethylene glycol for culturing induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The ability to fine-tune mechanical properties such as stiffness and the versatility of biomaterials is assessed, alongside applications of hydrogels with iPSC-CMs. Natural hydrogels often display higher biocompatibility with iPSC-CMs but often degrade quicker, whereas synthetic hydrogels can be modified to facilitate cell attachment and decrease degradation rates. iPSC-CM structure and electrophysiology can be assessed on natural and synthetic hydrogels, often resolving issues such as immaturity of iPSC-CMs. Biomaterial hydrogels can thus provide a more physiological model of the cardiac extracellular matrix compared to traditional 2D models, with the cardiac field expansively utilising hydrogels to recapitulate disease conditions such as stiffness, encourage alignment of iPSC-CMs and facilitate further model development such as engineered heart tissues (EHTs).


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Myocytes, Cardiac/metabolism , Hydrogels/pharmacology , Hydrogels/metabolism , Myocardium , Biocompatible Materials/pharmacology , Biocompatible Materials/metabolism , Cell Differentiation
11.
Front Physiol ; 14: 1143858, 2023.
Article in English | MEDLINE | ID: mdl-36935760

ABSTRACT

The sarcomere is the smallest functional unit of muscle contraction. It is delineated by a protein-rich structure known as the Z-disk, alternating with M-bands. The Z-disk anchors the actin-rich thin filaments and plays a crucial role in maintaining the mechanical stability of the cardiac muscle. A multitude of proteins interact with each other at the Z-disk and they regulate the mechanical properties of the thin filaments. Over the past 2 decades, the role of the Z-disk in cardiac muscle contraction has been assessed widely, however, the impact of genetic variants in Z-disk proteins has still not been fully elucidated. This review discusses the various Z-disk proteins (alpha-actinin, filamin C, titin, muscle LIM protein, telethonin, myopalladin, nebulette, and nexilin) and Z-disk-associated proteins (desmin, and obscurin) and their role in cardiac structural stability and intracellular signaling. This review further explores how genetic variants of Z-disk proteins are linked to inherited cardiac conditions termed cardiomyopathies.

12.
Cells ; 12(5)2023 02 24.
Article in English | MEDLINE | ID: mdl-36899856

ABSTRACT

Pathogenic variants in ACTN2, coding for alpha-actinin 2, are known to be rare causes of Hypertrophic Cardiomyopathy. However, little is known about the underlying disease mechanisms. Adult heterozygous mice carrying the Actn2 p.Met228Thr variant were phenotyped by echocardiography. For homozygous mice, viable E15.5 embryonic hearts were analysed by High Resolution Episcopic Microscopy and wholemount staining, complemented by unbiased proteomics, qPCR and Western blotting. Heterozygous Actn2 p.Met228Thr mice have no overt phenotype. Only mature males show molecular parameters indicative of cardiomyopathy. By contrast, the variant is embryonically lethal in the homozygous setting and E15.5 hearts show multiple morphological abnormalities. Molecular analyses, including unbiased proteomics, identified quantitative abnormalities in sarcomeric parameters, cell-cycle defects and mitochondrial dysfunction. The mutant alpha-actinin protein is found to be destabilised, associated with increased activity of the ubiquitin-proteasomal system. This missense variant in alpha-actinin renders the protein less stable. In response, the ubiquitin-proteasomal system is activated; a mechanism that has been implicated in cardiomyopathies previously. In parallel, a lack of functional alpha-actinin is thought to cause energetic defects through mitochondrial dysfunction. This seems, together with cell-cycle defects, the likely cause of the death of the embryos. The defects also have wide-ranging morphological consequences.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Hypertrophic , Animals , Male , Mice , Actinin/metabolism , Heart , Ubiquitins
13.
F1000Res ; 12: 1224, 2023.
Article in English | MEDLINE | ID: mdl-38298530

ABSTRACT

Animal models have proven integral to broadening our understanding of complex cardiac diseases but have been hampered by significant species-dependent differences in cellular physiology. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have shown great promise in the modelling of cardiac diseases despite limitations in functional and structural maturity. 3D stem cell-derived cardiac models represent a step towards mimicking the intricate microenvironment present in the heart as an in vitro model. Incorporation of non-myocyte cell types, such as cardiac fibroblasts, into engineered heart tissue models (EHTs) can help better recapitulate the cell-to-cell and cell-to-matrix interactions present in the human myocardium. Integration of human-induced pluripotent stem cell-derived cardiac fibroblasts (hiPSC-CFs) and hiPSC-CM into EHT models enables the generation of a genetically homogeneous modelling system capable of exploring the abstruse structural and electrophysiological interplay present in cardiac pathophysiology. Furthermore, the construction of more physiologically relevant 3D cardiac models offers great potential in the replacement of animals in heart disease research. Here we describe efficient and reproducible protocols for the differentiation of hiPSC-CMs and hiPSC-CFs and their subsequent assimilation into EHTs. The resultant EHT consists of longitudinally arranged iPSC-CMs, incorporated alongside hiPSC-CFs. EHTs with both hiPSC-CMs and hiPSC-CFs exhibit slower beating frequencies and enhanced contractile force compared to those composed of hiPSC-CMs alone. The modified protocol may help better characterise the interplay between different cell types in the myocardium and their contribution to structural remodelling and cardiac fibrosis.


Subject(s)
Heart Diseases , Induced Pluripotent Stem Cells , Animals , Humans , Myocytes, Cardiac , Myocardium/metabolism , Tissue Engineering/methods
14.
Front Physiol ; 13: 806366, 2022.
Article in English | MEDLINE | ID: mdl-35197863

ABSTRACT

Patients with heart failure often develop cardiac arrhythmias. The mechanisms and interrelations linking heart failure and arrhythmias are not fully understood. Historically, research into arrhythmias has been performed on affected individuals or in vivo (animal) models. The latter however is constrained by interspecies variation, demands to reduce animal experiments and cost. Recent developments in in vitro induced pluripotent stem cell technology and in silico modelling have expanded the number of models available for the evaluation of heart failure and arrhythmia. An agnostic approach, combining the modalities discussed here, has the potential to improve our understanding for appraising the pathology and interactions between heart failure and arrhythmia and can provide robust and validated outcomes in a variety of research settings. This review discusses the state of the art models, methodologies and techniques used in the evaluation of heart failure and arrhythmia and will highlight the benefits of using them in combination. Special consideration is paid to assessing the pivotal role calcium handling has in the development of heart failure and arrhythmia.

15.
Int J Mol Sci ; 22(6)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802723

ABSTRACT

The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.


Subject(s)
Cardiomyopathies/metabolism , Muscle Proteins/metabolism , Muscular Diseases/metabolism , Animals , Humans , Models, Biological , Muscle Proteins/chemistry , Muscle Proteins/genetics , Mutation/genetics
16.
J Am Heart Assoc ; 10(5): e019338, 2021 02.
Article in English | MEDLINE | ID: mdl-33586463

ABSTRACT

Cardiac fibroblasts are the primary cell type responsible for deposition of extracellular matrix in the heart, providing support to the contracting myocardium and contributing to a myriad of physiological signaling processes. Despite the importance of fibrosis in processes of wound healing, excessive fibroblast proliferation and activation can lead to pathological remodeling, driving heart failure and the onset of arrhythmias. Our understanding of the mechanisms driving the cardiac fibroblast activation and proliferation is expanding, and evidence for their direct and indirect effects on cardiac myocyte function is accumulating. In this review, we focus on the importance of the fibroblast-to-myofibroblast transition and the cross talk of cardiac fibroblasts with cardiac myocytes. We also consider the current use of models used to explore these questions.


Subject(s)
Heart Failure/metabolism , Myocytes, Cardiac/metabolism , Animals , Cells, Cultured , Fibroblasts/metabolism , Fibroblasts/pathology , Heart Failure/pathology , Humans , Myocytes, Cardiac/pathology , Signal Transduction
17.
Basic Res Cardiol ; 116(1): 14, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33637999

ABSTRACT

Titin truncating variants are a well-established cause of cardiomyopathy; however, the role of titin missense variants is less well understood. Here we describe the generation of a mouse model to investigate the underlying disease mechanism of a previously reported titin A178D missense variant identified in a family with non-compaction and dilated cardiomyopathy. Heterozygous and homozygous mice carrying the titin A178D missense variant were characterised in vivo by echocardiography. Heterozygous mice had no detectable phenotype at any time point investigated (up to 1 year). By contrast, homozygous mice developed dilated cardiomyopathy from 3 months. Chronic adrenergic stimulation aggravated the phenotype. Targeted transcript profiling revealed induction of the foetal gene programme and hypertrophic signalling pathways in homozygous mice, and these were confirmed at the protein level. Unsupervised proteomics identified downregulation of telethonin and four-and-a-half LIM domain 2, as well as the upregulation of heat shock proteins and myeloid leukaemia factor 1. Loss of telethonin from the cardiac Z-disc was accompanied by proteasomal degradation; however, unfolded telethonin accumulated in the cytoplasm, leading to a proteo-toxic response in the mice.We show that the titin A178D missense variant is pathogenic in homozygous mice, resulting in cardiomyopathy. We also provide evidence of the disease mechanism: because the titin A178D variant abolishes binding of telethonin, this leads to its abnormal cytoplasmic accumulation. Subsequent degradation of telethonin by the proteasome results in proteasomal overload, and activation of a proteo-toxic response. The latter appears to be a driving factor for the cardiomyopathy observed in the mouse model.


Subject(s)
Cardiomyopathies/genetics , Gene Editing , Mutation, Missense , Protein Kinases/genetics , Age Factors , Animals , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Connectin/metabolism , Genetic Predisposition to Disease , Heterozygote , Homozygote , Mice, Inbred C57BL , Mice, Mutant Strains , Phenotype , Proteasome Endopeptidase Complex/metabolism , Protein Kinases/metabolism , Proteolysis , Proteome , Transcriptome , Ventricular Function, Left
18.
Biology (Basel) ; 9(11)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207727

ABSTRACT

Recent advances have made pluripotent stem cell (PSC)-derived cardiomyocytes an attractive option to model both normal and diseased cardiac function at the single-cell level. However, in vitro differentiation yields heterogeneous populations of cardiomyocytes and other cell types, potentially confounding phenotypic analyses. Fluorescent PSC-derived cardiomyocyte reporter systems allow specific cell lineages to be labelled, facilitating cell isolation for downstream applications including drug testing, disease modelling and cardiac regeneration. In this review, the different genetic strategies used to generate such reporter lines are presented with an emphasis on their relative technical advantages and disadvantages. Next, we explore how the fluorescent reporter lines have provided insights into cardiac development and cardiomyocyte physiology. Finally, we discuss how exciting new approaches using PSC-derived cardiomyocyte reporter lines are contributing to progress in cardiac cell therapy with respect to both graft adaptation and clinical safety.

19.
Front Physiol ; 11: 606740, 2020.
Article in English | MEDLINE | ID: mdl-33384614

ABSTRACT

The ability§ of the heart to adapt to changes in the mechanical environment is critical for normal cardiac physiology. The role of nitric oxide is increasingly recognized as a mediator of mechanical signaling. Produced in the heart by nitric oxide synthases, nitric oxide affects almost all mechano-transduction pathways within the cardiomyocyte, with roles mediating mechano-sensing, mechano-electric feedback (via modulation of ion channel activity), and calcium handling. As more precise experimental techniques for applying mechanical stresses to cells are developed, the role of these forces in cardiomyocyte function can be further understood. Furthermore, specific inhibitors of different nitric oxide synthase isoforms are now available to elucidate the role of these enzymes in mediating mechano-electrical signaling. Understanding of the links between nitric oxide production and mechano-electrical signaling is incomplete, particularly whether mechanically sensitive ion channels are regulated by nitric oxide, and how this affects the cardiac action potential. This is of particular relevance to conditions such as atrial fibrillation and heart failure, in which nitric oxide production is reduced. Dysfunction of the nitric oxide/mechano-electrical signaling pathways are likely to be a feature of cardiac pathology (e.g., atrial fibrillation, cardiomyopathy, and heart failure) and a better understanding of the importance of nitric oxide signaling and its links to mechanical regulation of heart function may advance our understanding of these conditions.

20.
J Muscle Res Cell Motil ; 40(2): 159-167, 2019 06.
Article in English | MEDLINE | ID: mdl-31147888

ABSTRACT

Titin, the largest protein known, has attracted a lot of interest in the cardiovascular field in recent years, since the discovery that truncating variants in titin are commonly found in patients with dilated cardiomyopathy. This review will discuss the contribution of variants in titin to inherited cardiac conditions (cardiomyopathies) and how model systems, such as animals and cellular systems, can help to provide insights into underlying disease mechanisms. It will also give an outlook onto exciting technological developments, such as in the field of CRISPR, which may facilitate future research on titin variants and their contributions to cardiomyopathies.


Subject(s)
Cardiomyopathy, Dilated , Connectin , Heart Defects, Congenital , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Connectin/genetics , Connectin/metabolism , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...