Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Dent Educ ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082447

ABSTRACT

INTRODUCTION: Radiographic diagnostic competences are a primary focus of dental education. This study assessed two feedback methods to enhance learning outcomes and explored the feasibility of artificial intelligence (AI) to support education. MATERIALS AND METHODS: Fourth-year dental students had access to 16 virtual radiological example cases for 8 weeks. They were randomly assigned to either elaborated feedback (eF) or knowledge of results feedback (KOR) based on expert consensus. Students´ diagnostic competences were tested on bitewing/periapical radiographs for detection of caries, apical periodontitis, accuracy for all radiological findings and image quality. We additionally assessed the accuracy of an AI system (dentalXrai Pro 3.0), where applicable. Data were analysed descriptively and using ROC analysis (accuracy, sensitivity, specificity, AUC). Groups were compared with Welch's t-test. RESULTS: Among 55 students, the eF group by large performed significantly better than the KOR group in detecting enamel caries (accuracy 0.840 ± 0.041, p = .196; sensitivity 0.638 ± 0.204, p = .037; specificity 0.859 ± 0.050, p = .410; ROC AUC 0.748 ± 0.094, p = .020), apical periodontitis (accuracy 0.813 ± 0.095, p = .011; sensitivity 0.476 ± 0.230, p = .003; specificity 0.914 ± 0.108, p = .292; ROC AUC 0.695 ± 0.123, p = .001) and in assessing the image quality of periapical images (p = .031). No significant differences were observed for the other outcomes. The AI showed almost perfect diagnostic performance (enamel caries: accuracy 0.964, sensitivity 0.857, specificity 0.074; dentin caries: accuracy 0.988, sensitivity 0.941, specificity 1.0; overall: accuracy 0.976, sensitivity 0.958, specificity 0.983). CONCLUSION: Elaborated feedback can improve student's radiographic diagnostic competences, particularly in detecting enamel caries and apical periodontitis. Using an AI may constitute an alternative to expert labelling of radiographs.

2.
Acta Odontol Scand ; 83: 204-209, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661245

ABSTRACT

OBJECTIVE: The current study explores whether there is a clinically relevant distinction in the measurement of marginal bone loss when comparing high-dose (HD) versus low-dose (LD) cone beam computed tomography (CBCT) protocols in small and large acquisition volumes.  Material and Methods: CBCTs of four human cadaveric preparates were taken in HD and LD mode in two different fields of view 8 × 8 cm2 (LV) and 5 × 5 cm2 (SV). In total, 43 sites of 15 teeth were randomly chosen, and marginal bone loss was measured twice in all protocols at 43 sites of 15 teeth by one calibrated investigator. Bland-Altman plots and Lin's concordance correlation coefficient (CCC) were calculated to assess the extent of agreement of the measurements. Additionally, the rater scored the certainty in each of the measurements. RESULTS: For HD-CBCT CCC of measurements obtained using SV versus LV was 0.991. CCC of measurements obtained using SV versus LV of LD-CBCT was 0.963. Both CCC values indicated excellent agreement between the two volumes in both protocols.  CCC also indicated high intramodality correlation between HD-CBCT and LD-CBCT independent of the acquisition volume (0.963 - 0.992). Bland-Altman plots also indicated no substantial differences. Results of certainty scoring showed significant differences (p = 0.004 (LV), p < 0.001(SV)) between the LD and HD-CBCT. CONCLUSIONS: Accuracy of measurements of bone loss shows no clinical noticeable effects depending on the CBCT volume in this ex vivo study. There appears to be no relevant advantage of SV over LV, neither in HD-CBCT nor in LD-CBCT and additionally no relevant advantage of HD versus LD in visualizing marginal bone loss.


Subject(s)
Cadaver , Cone-Beam Computed Tomography , Cone-Beam Computed Tomography/methods , Humans , Alveolar Bone Loss/diagnostic imaging
3.
J Dent ; 142: 104859, 2024 03.
Article in English | MEDLINE | ID: mdl-38272436

ABSTRACT

OBJECTIVE: To investigate the image quality of a low-dose dental imaging protocol in the first clinical photon-counting computed tomography (PCCT) system in comparison to a normal-dose acquisition in a digital volume tomography (DVT) system. MATERIALS AND METHODS: Clinical PCCT systems offer an increased spatial resolution compared to previous generations of clinical systems. Their spatial resolution is in the order of dental DVT systems. Resolution-matched acquisitions of ten porcine jaws were performed in a PCCT (Naeotom Alpha, Siemens Healthineers) and in a DVT (Orthophos XL, Dentsply Sirona). PCCT images were acquired with 90 kV at a dose of 1 mGy CTDI16 cm. DVT used 85 kV at 4 mGy. Image reconstruction was performed using the standard algorithms of each system to a voxel size of 160 × 160 × 200 µm. The dose-normalized contrast-to-noise ratio (CNRD) was measured between dentine and enamel and dentine and bone. Two readers evaluated overall diagnostic quality of images and quality of relevant structures such as root channels and dentine. RESULTS: CNRD is higher in all PCCT acquisitions. CNRD is 37 % higher for the contrast dentine-enamel and 31 % higher for the dentine-bone contrast (p < 0.05). Overall diagnostic image quality was higher for PCCT over DVT (p < 0.02 and p < 0.04 for readers 1 and 2). Quality scores for anatomical structures were higher in PCCT compared to DVT (all p < 0.05). Inter- and intrareader reproducibility were acceptable (all ICC>0.64). CONCLUSIONS: PCCT provides an increased image quality over DVT even at a lower dose level and might enable complex dental imaging protocols in the future. CLINICAL SIGNIFICANCE: The evolution of photon-counting technology and it's optimization will increasingly move dental imaging towards standardized 3D visualizations providing both minimal radiation exposure and high diagnostic accuracy.


Subject(s)
Cone-Beam Computed Tomography , Tomography, X-Ray Computed , Animals , Swine , Reproducibility of Results , Phantoms, Imaging , Tomography, X-Ray Computed/methods , Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL