Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Nature ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987588

ABSTRACT

Chronic hepatitis B virus (HBV) infection affects 300 million patients worldwide1,2, in whom virus-specific CD8 T cells by still ill-defined mechanisms lose their function and cannot eliminate HBV-infected hepatocytes3-7. Here we demonstrate that a liver immune rheostat renders virus-specific CD8 T cells refractory to activation and leads to their loss of effector functions. In preclinical models of persistent infection with hepatotropic viruses such as HBV, dysfunctional virus-specific CXCR6+ CD8 T cells accumulated in the liver and, as a characteristic hallmark, showed enhanced transcriptional activity of cAMP-responsive element modulator (CREM) distinct from T cell exhaustion. In patients with chronic hepatitis B, circulating and intrahepatic HBV-specific CXCR6+ CD8 T cells with enhanced CREM expression and transcriptional activity were detected at a frequency of 12-22% of HBV-specific CD8 T cells. Knocking out the inhibitory CREM/ICER isoform in T cells, however, failed to rescue T cell immunity. This indicates that CREM activity was a consequence, rather than the cause, of loss in T cell function, further supported by the observation of enhanced phosphorylation of protein kinase A (PKA) which is upstream of CREM. Indeed, we found that enhanced cAMP-PKA-signalling from increased T cell adenylyl cyclase activity augmented CREM activity and curbed T cell activation and effector function in persistent hepatic infection. Mechanistically, CD8 T cells recognizing their antigen on hepatocytes established close and extensive contact with liver sinusoidal endothelial cells, thereby enhancing adenylyl cyclase-cAMP-PKA signalling in T cells. In these hepatic CD8 T cells, which recognize their antigen on hepatocytes, phosphorylation of key signalling kinases of the T cell receptor signalling pathway was impaired, which rendered them refractory to activation. Thus, close contact with liver sinusoidal endothelial cells curbs the activation and effector function of HBV-specific CD8 T cells that target hepatocytes expressing viral antigens by means of the adenylyl cyclase-cAMP-PKA axis in an immune rheostat-like fashion.

2.
J Infect Dis ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847286

ABSTRACT

BACKGROUND: Immunological studies on chronic hepatitis B virus (HBV) infection have convincingly shown immune dysfunction involving multiple cell types. The focus of the majority of studies has been on the role of T cells and showed an impaired functional T cell response to HBV. B cells have been evaluated more recently, but in contrast to T cells, more pronounced activation of circulating B cells has been reported. To gain more insight into the activation status of B cells, we investigated the activation gene profile of B cells in the blood and liver of chronic HBV patients. METHODS: RNA-seq and flow cytometric analysis was performed on peripheral blood B cells of immune active chronic HBV patients, comparing them with samples from healthy controls. In addition, gene expression profiles of B cells in the liver were analyzed by bulk and single-cell RNA-seq. RESULTS AND CONCLUSIONS: Our data show a distinctive B cell activation gene signature in the blood of immune active chronic HBV patients, characterized by a significant upregulation of immune-related genes, including IRF1, STAT1, STAT3, TAP1, and TAPBP. This peripheral activation profile was also observed in B cells from the liver by single cell RNA-seq showing upregulation of IRF1, CD83 and significantly higher CD69 expression, with naive and memory B cell subsets being the primary carriers of the signature. Our findings suggest that B cell gene profiles reflect responsiveness to HBV infection, these findings are relevant for clinical studies evaluating immunomodulatory treatment strategies for HBV.

3.
Eur J Immunol ; : e2451085, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813721

ABSTRACT

Studies have traditionally focused on the role of T cells in chronic hepatitis B (CHB), but recent evidence supports a role for B cells. The enrichment of so-called atypical memory (AtM) B cells, which show reduced signaling and impaired differentiation, is believed to be a characteristic feature of CHB, potentially contributing to the observed dysfunctional anti-HBsAg B-cell responses. Our study, involving 62 CHB patients across clinical phases, identified AtM B cells expressing IFNLR1 and interferon-stimulated genes. Contrary to previous reports, we found relatively low frequencies of AtM B cells in the liver, comparable to peripheral blood. However, liver plasma cell frequencies were significantly higher, particularly during phases with elevated viral loads and liver enzyme levels. Liver plasma cells exhibited signs of active proliferation, especially in the immune active phase. Our findings suggest a potential role for plasma cells, alongside potential implications and consequences of local proliferation, within the livers of CHB patients. While the significance of AtM B cells remains uncertain, further investigation is warranted to determine their responsiveness to interferons and their role in CHB.

4.
Hepatology ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630448

ABSTRACT

BACKGROUND AIMS: Pegylated interferon-α (PegIFNα) is of limited utility during immunotolerant or immune active phases of chronic hepatitis B infection but is being explored as part of new cure regimens. Low/absent levels of IFNα found in some patients receiving treatment are associated with limited/no virological responses. The study aimed to determine if sera from participants inhibit IFNα activity and/or contain therapy-induced anti-IFNα antibodies. APPROACH RESULTS: Pre-treatment, on-treatment, and post-treatment sera from 61 immunotolerant trial participants on PegIFNα/entecavir therapy and 88 immune active trial participants on PegIFNα/tenofovir therapy were screened for anti-IFNα antibodies by indirect ELISA. The neutralization capacity of antibodies was measured by preincubation of sera±recombinant human IFNα added to Huh7 cells with the measurement of interferon-stimulated gene (ISG)-induction by qPCR. Correlations between serum-induced ISG inhibition, presence, and titer of anti-IFNα antibodies and virological responses were evaluated. Preincubation of on-treatment serum from 26 immunotolerant (43%) and 13 immune active (15%) participants with recombinant-human IFNα markedly blunted ISG-induction in Huh7 cells. The degree of ISG inhibition correlated with IFNα antibody titer ( p < 0.0001; r = 0.87). On-treatment development of anti-IFNα neutralizing antibodies (nAbs) was associated with reduced quantitative HBsAg and qHBeAg declines ( p < 0.05) and inhibited IFNα bioactivity to 240 weeks after PegIFNα cessation. Children developed anti-IFNα nAbs more frequently than adults ( p = 0.004) but nAbs in children had less impact on virological responses. CONCLUSIONS: The development of anti-IFNα nAbs during PegIFNα treatment diminishes responses to antiviral therapy. Understanding how and why anti-IFNα antibodies develop may allow for the optimization of IFN-based therapy, which is critical given its renewed use in HBV-cure strategies.

5.
Antiviral Res ; 226: 105893, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679166

ABSTRACT

With the increasing momentum and success of monoclonal antibody therapy in conventional medical practices, there is a revived emphasis on the development of monoclonal antibodies targeting the hepatitis B surface antigen (anti-HBs) for the treatment of chronic hepatitis B (HBV) and hepatitis D (HDV). Combination therapies of anti-HBs monoclonal antibodies, and novel anti-HBV compounds and immunomodulatory drugs presenting a promising avenue to enhanced therapeutic outcomes in HBV/HDV cure regimens. In this review, we will cover the role of antibodies in the protection and clearance of HBV infection, the association of anti-HBV surface antigen antibodies (anti-HBs) in protection against HBV and how antibody effector functions, beyond neutralization, are likely necessary. Lastly, we will review clinical data from previous and ongoing clinical trials of passive antibody therapy to provide a state-of-the-are perspective on passive antibody therapies in combinations with additional novel agents.


Subject(s)
Hepatitis D , Immunization, Passive , Humans , Hepatitis D/immunology , Hepatitis D/drug therapy , Hepatitis B virus/immunology , Hepatitis B virus/drug effects , Hepatitis B Antibodies/immunology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/drug therapy , Animals , Hepatitis B Surface Antigens/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/immunology , Hepatitis B/immunology , Hepatitis B/prevention & control , Hepatitis B/drug therapy , Antiviral Agents/therapeutic use , Hepatitis Delta Virus/immunology
6.
J Immunol ; 212(6): 1002-1011, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38294274

ABSTRACT

Immune-mediated liver damage is the driver of disease progression in patients with chronic hepatitis B virus (HBV) infection. Liver damage is an Ag-independent process caused by bystander activation of CD8 T cells and NK cells. How bystander lymphocyte activation is initiated in chronic hepatitis B patients remains unclear. Periods of liver damage, called hepatic flares, occur unpredictably, making early events difficult to capture. To address this obstacle, we longitudinally sampled the liver of chronic hepatitis B patients stopping antiviral therapy and analyzed immune composition and activation using flow cytometry and single-cell RNA sequencing. At 4 wk after stopping therapy, HBV replication rebounded but no liver damage was detectable. There were no changes in cell frequencies at viral rebound. Single-cell RNA sequencing revealed upregulation of IFN-stimulated genes (ISGs) and proinflammatory cytokine migration inhibitory factor (MIF) at viral rebound in patients that go on to develop hepatic flares 6-18 wk after stopping therapy. The type I IFN signature was only detectable within the liver, and neither IFN-α/ß or ISG induction could be detected in the peripheral blood. In vitro experiments confirmed the type I IFN-dependent ISG profile whereas MIF was induced primarily by IL-12. MIF exposure further amplified inflammatory cytokine production by myeloid cells. Our data show that innate immune activation is detectable in the liver before clinically significant liver damage is evident. The combination of type I IFN and enhanced cytokine production upon MIF exposure represent the earliest immunological triggers of lymphocyte bystander activation observed in hepatic flares associated with chronic HBV infection.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Humans , Hepatitis B virus , Liver , Cytokines/metabolism , Antiviral Agents/therapeutic use , Antiviral Agents/metabolism
7.
Hepatol Commun ; 7(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38055623

ABSTRACT

BACKGROUND: There are no immunological biomarkers that predict control of chronic hepatitis B (CHB). The lack of immune biomarkers raises concerns for therapies targeting PD-1/PD-L1 because they have the potential for immune-related adverse events. Defining specific immune functions associated with control of HBV replication could identify patients likely to respond to anti-PD-1/PD-L1 therapies and achieve a durable functional cure. METHODS: We enrolled immunotolerant, HBeAg+ immune-active (IA+), HBeAg- immune-active (IA-), inactive carriers, and functionally cured patients to test ex vivo PD-1 blockade on HBV-specific T cell functionality. Peripheral blood mononuclear cells were stimulated with overlapping peptides covering HBV proteins +/-α-PD-1 blockade. Functional T cells were measured using a 2-color FluoroSpot assay for interferon-γ and IL-2. Ex vivo functional restoration was compared to the interferon response capacity assay, which predicts overall survival in cancer patients receiving checkpoint inhibitors. RESULTS: Ex vivo interferon-γ+ responses did not differ across clinical phases. IL-2+ responses were significantly higher in patients with better viral control and preferentially restored with PD-1 blockade. Inactive carrier patients displayed the greatest increase in IL-2 production, which was dominated by CD4 T cell and response to the HBcAg. The interferon response capacity assay significantly correlated with the degree of HBV-specific T cell restoration. CONCLUSIONS: IL-2 production was associated with better HBV control and superior to interferon-γ as a marker of T cell restoration following ex vivo PD-1 blockade. Our study suggests that responsiveness to ex vivo PD-1 blockade, or the interferon response capacity assay, may support stratification for α-PD-1 therapies.


Subject(s)
Hepatitis B, Chronic , Humans , T-Lymphocytes/metabolism , Hepatitis B virus , Interleukin-2 , Interferon-gamma , B7-H1 Antigen , Hepatitis B e Antigens , Programmed Cell Death 1 Receptor , Leukocytes, Mononuclear/metabolism , Biomarkers
8.
JHEP Rep ; 5(9): 100817, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37600958

ABSTRACT

Background & Aims: Novel therapies for chronic hepatitis B (CHB), such as RNA interference, target all viral RNAs for degradation, whereas nucleoside analogues are thought to block reverse transcription with minimal impact on viral transcripts. However, limitations in technology and sampling frequency have been obstacles to measuring actual changes in HBV transcription in the liver of patients starting therapy. Methods: We used elective liver sampling with fine-needle aspirates (FNAs) to investigate the impact of treatment on viral replication in patients with CHB. Liver FNAs were collected from patients with CHB at baseline and 12 and 24 weeks after starting tenofovir alafenamide treatment. Liver FNAs were subjected to single-cell RNA sequencing and analysed using the Viral-Track method. Results: HBV was the only viral genome detected and was enriched within hepatocytes. The 5' sequencing technology identified protein-specific HBV transcripts and showed that tenofovir alafenamide therapy specifically reduced pre-genomic RNA transcripts with little impact on HBsAg or HBx transcripts. Infected hepatocytes displayed unique gene signatures associated with an immunological response to viral infection. Conclusions: Longitudinal liver sampling, combined with single-cell RNA sequencing, captured the dynamic impact of antiviral therapy on the replication status of HBV and revealed host-pathogen interactions at the transcriptional level in infected hepatocytes. This sequencing-based approach is applicable to early-stage clinical studies, enabling mechanistic studies of immunopathology and the effect of novel therapeutic interventions. Impact and Implications: Infection-dependent transcriptional changes and the impact of antiviral therapy on viral replication can be measured in longitudinal human liver biopsies using single-cell RNA sequencing data.

9.
Proc Natl Acad Sci U S A ; 120(24): e2220294120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37276424

ABSTRACT

A hepatitis C virus (HCV) vaccine is urgently needed. Vaccine development has been hindered by HCV's genetic diversity, particularly within the immunodominant hypervariable region 1 (HVR1). Here, we developed a strategy to elicit broadly neutralizing antibodies to HVR1, which had previously been considered infeasible. We first applied a unique information theory-based measure of genetic distance to evaluate phenotypic relatedness between HVR1 variants. These distances were used to model the structure of HVR1's sequence space, which was found to have five major clusters. Variants from each cluster were used to immunize mice individually, and as a pentavalent mixture. Sera obtained following immunization neutralized every variant in a diverse HCVpp panel (n = 10), including those resistant to monovalent immunization, and at higher mean titers (1/ID50 = 435) than a glycoprotein E2 (1/ID50 = 205) vaccine. This synergistic immune response offers a unique approach to overcoming antigenic variability and may be applicable to other highly mutable viruses.


Subject(s)
Hepacivirus , Hepatitis C , Animals , Mice , Viral Envelope Proteins/genetics , Immunization , Immunity , Hepatitis C Antibodies , Antibodies, Neutralizing
11.
Hepatology ; 78(5): 1525-1541, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37158243

ABSTRACT

BACKGROUND AND AIMS: HBV infection is restricted to the liver, where it drives exhaustion of virus-specific T and B cells and pathogenesis through dysregulation of intrahepatic immunity. Our understanding of liver-specific events related to viral control and liver damage has relied almost solely on animal models, and we lack useable peripheral biomarkers to quantify intrahepatic immune activation beyond cytokine measurement. Our objective was to overcome the practical obstacles of liver sampling using fine-needle aspiration and develop an optimized workflow to comprehensively compare the blood and liver compartments within patients with chronic hepatitis B using single-cell RNA sequencing. APPROACH AND RESULTS: We developed a workflow that enabled multi-site international studies and centralized single-cell RNA sequencing. Blood and liver fine-needle aspirations were collected, and cellular and molecular captures were compared between the Seq-Well S 3 picowell-based and the 10× Chromium reverse-emulsion droplet-based single-cell RNA sequencing technologies. Both technologies captured the cellular diversity of the liver, but Seq-Well S 3 effectively captured neutrophils, which were absent in the 10× dataset. CD8 T cells and neutrophils displayed distinct transcriptional profiles between blood and liver. In addition, liver fine-needle aspirations captured a heterogeneous liver macrophage population. Comparison between untreated patients with chronic hepatitis B and patients treated with nucleoside analogs showed that myeloid cells were highly sensitive to environmental changes while lymphocytes displayed minimal differences. CONCLUSIONS: The ability to electively sample and intensively profile the immune landscape of the liver, and generate high-resolution data, will enable multi-site clinical studies to identify biomarkers for intrahepatic immune activity in HBV and beyond.


Subject(s)
Hepatitis B, Chronic , Animals , Humans , Hepatitis B, Chronic/drug therapy , Biopsy, Fine-Needle , Hepatitis B virus/genetics , Liver/pathology , CD8-Positive T-Lymphocytes , Biomarkers , Sequence Analysis, RNA
12.
J Clin Invest ; 133(1)2023 01 03.
Article in English | MEDLINE | ID: mdl-36594467

ABSTRACT

Accumulation of activated immune cells results in nonspecific hepatocyte killing in chronic hepatitis B (CHB), leading to fibrosis and cirrhosis. This study aims to understand the underlying mechanisms in humans and to define whether these are driven by widespread activation or a subpopulation of immune cells. We enrolled CHB patients with active liver damage to receive antiviral therapy and performed longitudinal liver sampling using fine-needle aspiration to investigate mechanisms of CHB pathogenesis in the human liver. Single-cell sequencing of total liver cells revealed a distinct liver-resident, polyclonal CD8+ T cell population that was enriched at baseline and displayed a highly activated immune signature during liver damage. Cytokine combinations, identified by in silico prediction of ligand-receptor interaction, induced the activated phenotype in healthy liver CD8+ T cells, resulting in nonspecific Fas ligand-mediated killing of target cells. These results define a CD8+ T cell population in the human liver that can drive pathogenesis and a key pathway involved in their function in CHB patients.


Subject(s)
Hepatitis B, Chronic , Humans , CD8-Positive T-Lymphocytes , Liver Cirrhosis/pathology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Hepatitis B virus
13.
J Viral Hepat ; 30(1): 64-72, 2023 01.
Article in English | MEDLINE | ID: mdl-36302162

ABSTRACT

Individuals who spontaneously clear hepatitis C virus (HCV) infection have demonstrated evidence of partial protective immunity, whereas treatment-induced clearance provides little or no protection against reinfection. We aimed to investigate whether treatment of acute HCV infection with direct-acting antivirals (DAA) prevents establishment of, or reverses, T-cell exhaustion, leading to a virus-specific T-cell immune profile more similar to that seen in spontaneous clearance. The magnitude and breadth of HCV-specific T-cell responses before and after DAA or interferon-based therapy in acute or chronic HCV were compared to those of participants with spontaneous clearance of infection, using Enzyme-linked Immunospot (ELISPOT). PBMCs were available for 55 patients comprising 4 groups: spontaneous clearance (n = 17), acute interferon (n = 14), acute DAA (n = 13) and chronic DAA (n = 11). After controlling for sex, the magnitude of post-treatment HCV-specific responses after acute DAA treatment was greater than after chronic DAA or acute IFN treatment and similar to those found in spontaneous clearers. However, spontaneous clearers responded to more HCV peptide pools indicating greater breadth of response. In conclusion, early treatment with DAAs may prevent or reverse some degree of immune exhaustion and result in stronger HCV-specific responses post-treatment. However, individuals with spontaneous clearance had broader HCV-specific responses.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Humans , Hepacivirus , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Hepatitis C, Chronic/drug therapy , Interferons/therapeutic use , Immunity
14.
bioRxiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-38529494

ABSTRACT

A dysregulated adaptive immune system is a key feature of aging, and is associated with age-related chronic diseases and mortality. Most notably, aging is linked to a loss in the diversity of the T cell repertoire and expansion of activated inflammatory age-related T cell subsets, though the main drivers of these processes are largely unknown. Here, we find that T cell aging is directly influenced by B cells. Using multiple models of B cell manipulation and single-cell omics, we find B cells to be a major cell type that is largely responsible for the age-related reduction of naive T cells, their associated differentiation towards pathogenic immunosenescent T cell subsets, and for the clonal restriction of their T cell receptor (TCR). Accordingly, we find that these pathogenic shifts can be therapeutically targeted via CD20 monoclonal antibody treatment. Mechanistically, we uncover a new role for insulin receptor signaling in influencing age-related B cell pathogenicity that in turn induces T cell dysfunction and a decline in healthspan parameters. These results establish B cells as a pivotal force contributing to age-associated adaptive immune dysfunction and healthspan outcomes, and suggest new modalities to manage aging and related multi-morbidity.

15.
Nat Commun ; 13(1): 6992, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36385011

ABSTRACT

Interferons induced early after SARS-CoV-2 infection are crucial for shaping immunity and preventing severe COVID-19. We previously demonstrated that injection of pegylated interferon-lambda accelerated viral clearance in COVID-19 patients (NCT04354259). To determine if the viral decline is mediated by enhanced immunity, we assess in vivo responses to interferon-lambda by single cell RNA sequencing and measure SARS-CoV-2-specific T cell and antibody responses between placebo and interferon-lambda-treated patients. Here we show that interferon-lambda treatment induces interferon stimulated genes in peripheral immune cells expressing IFNLR1, including plasmacytoid dendritic cells and B cells. Interferon-lambda does not affect SARS-CoV-2-specific antibody levels or the magnitude of virus-specific T cells. However, we identify delayed T cell responses in older adults, suggesting that interferon-lambda can overcome delays in adaptive immunity to accelerate viral clearance in high-risk patients. Altogether, interferon-lambda offers an early COVID-19 treatment option for outpatients to boost innate antiviral defenses without dampening peripheral adaptive immunity.


Subject(s)
COVID-19 Drug Treatment , Interferons , Humans , Aged , SARS-CoV-2 , Antibodies, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , T-Lymphocytes
17.
Viruses ; 14(8)2022 08 17.
Article in English | MEDLINE | ID: mdl-36016422

ABSTRACT

HepG2 cells reconstituted with Hepatitis B virus (HBV) entry receptor sodium taurocholate co-transporting polypeptide (NTCP) are widely used as a convenient in vitro cell culture infection model for HBV replication studies. As such, it is pertinent that HBV infectivity is maintained at steady-state levels for an accurate interpretation of in vitro data. However, variations in the HBV infection efficiency due to imbalanced NTCP expression levels in the HepG2 cell line may affect experimental results. In this study, we performed single cell-cloning of HepG2-NTCP-A3 parental cells via limiting dilution and obtained multiple subclones with increased permissiveness to HBV. Specifically, one subclone (HepG2-NTCP-A3/C2) yielded more than four-fold higher HBV infection compared to the HepG2-NTCP-A3 parental clone. In addition, though HBV infectivity was universally reduced in the absence of polyethylene glycol (PEG), subclone C2 maintained relatively greater permissiveness under PEG-free conditions, suggesting the functional heterogeneity within parental HepG2-NTCP-A3 may be exploitable in developing a PEG-free HBV infection model. The increased viral production correlated with increased intracellular viral antigen expression as evidenced through HBcAg immunofluorescence staining. Further, these subclones were found to express different levels of NTCP, albeit with no remarkable morphology or cell growth differences. In conclusion, we isolated the subclones of HepG2-NTCP-A3 which support efficient HBV production and thus provide an improved in vitro HBV infection model.


Subject(s)
Hepatitis B , Symporters , Hep G2 Cells , Hepatitis B virus/physiology , Hepatocytes , Humans , Organic Anion Transporters, Sodium-Dependent/genetics , Organic Anion Transporters, Sodium-Dependent/metabolism , Receptors, Virus/metabolism , Symporters/genetics , Symporters/metabolism , Taurocholic Acid , Virus Internalization
18.
Nat Genet ; 54(8): 1103-1116, 2022 08.
Article in English | MEDLINE | ID: mdl-35835913

ABSTRACT

The chr12q24.13 locus encoding OAS1-OAS3 antiviral proteins has been associated with coronavirus disease 2019 (COVID-19) susceptibility. Here, we report genetic, functional and clinical insights into this locus in relation to COVID-19 severity. In our analysis of patients of European (n = 2,249) and African (n = 835) ancestries with hospitalized versus nonhospitalized COVID-19, the risk of hospitalized disease was associated with a common OAS1 haplotype, which was also associated with reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance in a clinical trial with pegIFN-λ1. Bioinformatic analyses and in vitro studies reveal the functional contribution of two associated OAS1 exonic variants comprising the risk haplotype. Derived human-specific alleles rs10774671-A and rs1131454 -A decrease OAS1 protein abundance through allele-specific regulation of splicing and nonsense-mediated decay (NMD). We conclude that decreased OAS1 expression due to a common haplotype contributes to COVID-19 severity. Our results provide insight into molecular mechanisms through which early treatment with interferons could accelerate SARS-CoV-2 clearance and mitigate against severe COVID-19.


Subject(s)
COVID-19 , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , Alleles , COVID-19/genetics , Hospitalization , Humans , SARS-CoV-2/genetics
20.
Front Immunol ; 13: 818612, 2022.
Article in English | MEDLINE | ID: mdl-35493503

ABSTRACT

Background & Aim: Men have a higher prevalence of liver disease. Liver myeloid cells can regulate tissue inflammation, which drives progression of liver disease. We hypothesized that sex alters the responsiveness of liver myeloid cells, predisposing men to severe liver inflammation. Methods: Luminex was done on plasma from Hepatitis B Virus infected patients undergoing nucleoside analogue cessation in 45 male and female patients. We collected immune cells from the sinusoids of uninfected livers of 53 male and female donors. Multiparametric flow cytometry was used to phenotype and characterize immune composition. Isolated monocytes were stimulated with TLR ligands to measure the inflammatory potential and the expression of regulators of TLR signaling. Results: We confirmed that men experienced more frequent and severe liver damage upon Hepatitis B Virus reactivation, which was associated with inflammatory markers of myeloid activation. No differences were observed in the frequency or phenotype of sinusoidal myeloid cells between male and female livers. However, monocytes from male livers produced more inflammatory cytokines and chemokines in response to TLR stimulation than female monocytes. We investigated negative regulators of TLR signaling and found that TOLLIP was elevated in female liver-derived monocytes. Conclusions: Our data show that enhanced responsiveness of myeloid cells from the male liver predisposes men to inflammation, which was associated with altered expression of negative regulators of TLR signaling.


Subject(s)
Inflammation , Liver Diseases , Cytokines/metabolism , Female , Humans , Inflammation/metabolism , Liver Diseases/metabolism , Male , Monocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...