Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Trends Pharmacol Sci ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38763836

ABSTRACT

Alzheimer's disease (AD) and schizophrenia (SCZ) represent two major neuropathological conditions with a high disease burden. Despite their distinct etiologies, patients suffering from AD or SCZ share a common burden of disrupted memory functions unattended by current therapies. Recent preclinical analyses highlight cell-type-specific contributions of parvalbumin interneurons (PVIs), particularly the plasticity of their cellular excitability, towards intact neuronal network function (cell-to-network plasticity) and memory performance. Here we argue that deficits of PVI cell-to-network plasticity may underlie memory deficits in AD and SCZ, and we explore two therapeutic avenues: the targeting of PVI-specific neuromodulation, including by neuropeptides, and the recruitment of network synchrony in the gamma frequency range (40 Hz) by external stimulation. We finally propose that these approaches be merged under consideration of recent insights into human brain physiology.

2.
Science ; 384(6693): 338-343, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38635709

ABSTRACT

The computational capabilities of neuronal networks are fundamentally constrained by their specific connectivity. Previous studies of cortical connectivity have mostly been carried out in rodents; whether the principles established therein also apply to the evolutionarily expanded human cortex is unclear. We studied network properties within the human temporal cortex using samples obtained from brain surgery. We analyzed multineuron patch-clamp recordings in layer 2-3 pyramidal neurons and identified substantial differences compared with rodents. Reciprocity showed random distribution, synaptic strength was independent from connection probability, and connectivity of the supragranular temporal cortex followed a directed and mostly acyclic graph topology. Application of these principles in neuronal models increased dimensionality of network dynamics, suggesting a critical role for cortical computation.


Subject(s)
Nerve Net , Pyramidal Cells , Synapses , Temporal Lobe , Animals , Humans , Nerve Net/physiology , Nerve Net/ultrastructure , Pyramidal Cells/physiology , Pyramidal Cells/ultrastructure , Rodentia , Synapses/physiology , Synapses/ultrastructure , Temporal Lobe/physiology , Patch-Clamp Techniques
3.
J Physiol ; 602(8): 1703-1732, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38594842

ABSTRACT

We used whole-cell patch clamp to estimate the stationary voltage dependence of persistent sodium-current density (iNaP) in rat hippocampal mossy fibre boutons. Cox's method for correcting space-clamp errors was extended to the case of an isopotential compartment with attached neurites. The method was applied to voltage-ramp experiments, in which iNaP is assumed to gate instantaneously. The raw estimates of iNaP led to predicted clamp currents that were at variance with observation, hence an algorithm was devised to improve these estimates. Optionally, the method also allows an estimate of the membrane specific capacitance, although values of the axial resistivity and seal resistance must be provided. Assuming that membrane specific capacitance and axial resistivity were constant, we conclude that seal resistance continued to fall after adding TTX to the bath. This might have been attributable to a further deterioration of the seal after baseline rather than an unlikely effect of TTX. There was an increase in the membrane specific resistance in TTX. The reason for this is unknown, but it meant that iNaP could not be determined by simple subtraction. Attempts to account for iNaP with a Hodgkin-Huxley model of the transient sodium conductance met with mixed results. One thing to emerge was the importance of voltage shifts. Also, a large variability in previously reported values of transient sodium conductance in mossy fibre boutons made comparisons with our results difficult. Various other possible sources of error are discussed. Simulations suggest a role for iNaP in modulating the axonal attenuation of EPSPs. KEY POINTS: We used whole-cell patch clamp to estimate the stationary voltage dependence of persistent sodium-current density (iNaP) in rat hippocampal mossy fibre boutons, using a KCl-based internal (pipette) solution and correcting for the liquid junction potential (2 mV). Space-clamp errors and deterioration of the patch-clamp seal during the experiment were corrected for by compartmental modelling. Attempts to account for iNaP in terms of the transient sodium conductance met with mixed results. One possibility is that the transient sodium conductance is higher in mossy fibre boutons than in the axon shaft. The analysis illustrates the need to account for various voltage shifts (Donnan potentials, liquid junction potentials and, possibly, other voltage shifts). Simulations suggest a role for iNaP in modulating the axonal attenuation of excitatory postsynaptic potentials, hence analog signalling by dentate granule cells.


Subject(s)
Mossy Fibers, Hippocampal , Sodium , Rats , Animals , Presynaptic Terminals
4.
J Neuroinflammation ; 21(1): 58, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409076

ABSTRACT

Neuroinflammation is highly influenced by microglia, particularly through activation of the NLRP3 inflammasome and subsequent release of IL-1ß. Extracellular ATP is a strong activator of NLRP3 by inducing K+ efflux as a key signaling event, suggesting that K+-permeable ion channels could have high therapeutic potential. In microglia, these include ATP-gated THIK-1 K+ channels and P2X7 receptors, but their interactions and potential therapeutic role in the human brain are unknown. Using a novel specific inhibitor of THIK-1 in combination with patch-clamp electrophysiology in slices of human neocortex, we found that THIK-1 generated the main tonic K+ conductance in microglia that sets the resting membrane potential. Extracellular ATP stimulated K+ efflux in a concentration-dependent manner only via P2X7 and metabotropic potentiation of THIK-1. We further demonstrated that activation of P2X7 was mandatory for ATP-evoked IL-1ß release, which was strongly suppressed by blocking THIK-1. Surprisingly, THIK-1 contributed only marginally to the total K+ conductance in the presence of ATP, which was dominated by P2X7. This suggests a previously unknown, K+-independent mechanism of THIK-1 for NLRP3 activation. Nuclear sequencing revealed almost selective expression of THIK-1 in human brain microglia, while P2X7 had a much broader expression. Thus, inhibition of THIK-1 could be an effective and, in contrast to P2X7, microglia-specific therapeutic strategy to contain neuroinflammation.


Subject(s)
Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroinflammatory Diseases , Ion Channels/metabolism , Adenosine Triphosphate/pharmacology , Adenosine Triphosphate/metabolism , Receptors, Purinergic P2X7/metabolism
5.
Sci Adv ; 10(5): eadj7427, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38295164

ABSTRACT

Understanding the plasticity of neuronal networks is an emerging field of (patho-) physiological research, yet the underlying cellular mechanisms remain poorly understood. Gamma oscillations (30 to 80 hertz), a biomarker of cognitive performance, require and potentiate glutamatergic transmission onto parvalbumin-positive interneurons (PVIs), suggesting an interface for cell-to-network plasticity. In ex vivo local field potential recordings, we demonstrate long-term potentiation of hippocampal gamma power. Gamma potentiation obeys established rules of PVI plasticity, requiring calcium-permeable AMPA receptors (CP-AMPARs) and metabotropic glutamate receptors (mGluRs). A microcircuit computational model of CA3 gamma oscillations predicts CP-AMPAR plasticity onto PVIs critically outperforms pyramidal cell plasticity in increasing gamma power and completely accounts for gamma potentiation. We reaffirm this ex vivo in three PVI-targeting animal models, demonstrating that gamma potentiation requires PVI-specific signaling via a Gq/PKC pathway comprising mGluR5 and a Gi-sensitive, PKA-dependent pathway. Gamma activity-dependent, metabotropically mediated CP-AMPAR plasticity on PVIs may serve as a guiding principle in understanding network plasticity in health and disease.


Subject(s)
Hippocampus , Parvalbumins , Animals , Parvalbumins/metabolism , Hippocampus/metabolism , Long-Term Potentiation/physiology , Signal Transduction , Interneurons/physiology , Neuronal Plasticity/physiology
6.
Learn Health Syst ; 8(1): e10365, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38249839

ABSTRACT

Open and practical exchange, dissemination, and reuse of specimens and data have become a fundamental requirement for life sciences research. The quality of the data obtained and thus the findings and knowledge derived is thus significantly influenced by the quality of the samples, the experimental methods, and the data analysis. Therefore, a comprehensive and precise documentation of the pre-analytical conditions, the analytical procedures, and the data processing are essential to be able to assess the validity of the research results. With the increasing importance of the exchange, reuse, and sharing of data and samples, procedures are required that enable cross-organizational documentation, traceability, and non-repudiation. At present, this information on the provenance of samples and data is mostly either sparse, incomplete, or incoherent. Since there is no uniform framework, this information is usually only provided within the organization and not interoperably. At the same time, the collection and sharing of biological and environmental specimens increasingly require definition and documentation of benefit sharing and compliance to regulatory requirements rather than consideration of pure scientific needs. In this publication, we present an ongoing standardization effort to provide trustworthy machine-actionable documentation of the data lineage and specimens. We would like to invite experts from the biotechnology and biomedical fields to further contribute to the standard.

7.
Br J Pharmacol ; 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38073073

ABSTRACT

BACKGROUND AND PURPOSE: P2X4 receptors (P2X4R) are ligand gated cation channels that are activated by extracellular ATP released by neurons and glia. The receptors are widely expressed in the brain and have fractional calcium currents comparable with NMDA receptors. Although P2X4Rs have been reported to modulate synaptic transmission and plasticity, their involvement in shaping neuronal network activity remains to be elucidated. EXPERIMENTAL APPROACH: We investigated the effects of P2X receptors at network and synaptic level using local field potential electrophysiology, whole cell patch clamp recordings and calcium imaging in fast spiking parvalbumin positive interneurons (PVINs) in rat and mouse hippocampal slices. The stable ATP analogue ATPγS, selective antagonists and P2X4R knockout mice were used. KEY RESULTS: The P2XR agonist ATPγS reversibly decreased the power of gamma oscillations. This inhibition could be antagonized by the selective P2X4R antagonist PSB-12062 and was not observed in P2X4-/- mice. The phasic excitatory inputs of CA3 PVINs were one of the main regulators of the gamma power. Associational fibre compound excitatory postsynaptic currents (cEPSCs) in CA3 PVINs were inhibited by P2X4R activation. This effect was reversible, dependent on intracellular calcium and dynamin-dependent internalization of AMPA receptors. CONCLUSIONS AND IMPLICATIONS: The results indicate that P2X4Rs are an important source of dendritic calcium in CA3 PVINs, thereby regulating excitatory synaptic inputs onto the cells and presumably the state of gamma oscillations in the hippocampus. P2X4Rs represent an effective target to modulate hippocampal network activity in pathophysiological conditions such as Alzheimer's disease and schizophrenia.

9.
N Biotechnol ; 78: 22-28, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-37758054

ABSTRACT

AI development in biotechnology relies on high-quality data to train and validate algorithms. The FAIR principles (Findable, Accessible, Interoperable, and Reusable) and regulatory frameworks such as the In Vitro Diagnostic Regulation (IVDR) and the Medical Device Regulation (MDR) specify requirements on specimen and data provenance to ensure the quality and traceability of data used in AI development. In this paper, a framework is presented for recording and publishing provenance information to meet these requirements. The framework is based on the use of standardized models and protocols, such as the W3C PROV model and the ISO 23494 series, to capture and record provenance information at various stages of the data generation and analysis process. The framework and use case illustrate the role of provenance information in supporting the development of high-quality AI algorithms in biotechnology. Finally, the principles of the framework are illustrated in a simple computational pathology use case, showing how specimen and data provenance can be used in the development and documentation of an AI algorithm. The use case demonstrates the importance of managing and integrating distributed provenance information and highlights the complex task of considering factors such as semantic interoperability, confidentiality, and the verification of authenticity and integrity.


Subject(s)
Algorithms , Biotechnology , Artificial Intelligence
10.
Brain Stimul ; 15(5): 1223-1232, 2022.
Article in English | MEDLINE | ID: mdl-36058524

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) provides symptomatic relief in a growing number of neurological indications, but local synaptic dynamics in response to electrical stimulation that may relate to its mechanism of action have not been fully characterized. OBJECTIVE: The objectives of this study were to (1) study local synaptic dynamics during high frequency extracellular stimulation of the subthalamic nucleus (STN), and (2) compare STN synaptic dynamics with those of the neighboring substantia nigra pars reticulata (SNr). METHODS: Two microelectrodes were advanced into the STN and SNr of patients undergoing DBS surgery for Parkinson's disease (PD). Neuronal firing and evoked field potentials (fEPs) were recorded with one microelectrode during stimulation from an adjacent microelectrode. RESULTS: Inhibitory fEPs could be discerned within the STN and their amplitudes predicted bidirectional effects on neuronal firing (p = .013). There were no differences between STN and SNr inhibitory fEP dynamics at low stimulation frequencies (p > .999). However, inhibitory neuronal responses were sustained over time in STN during high frequency stimulation but not in SNr (p < .001) where depression of inhibitory input was coupled with a return of neuronal firing (p = .003). INTERPRETATION: Persistent inhibitory input to the STN suggests a local synaptic mechanism for the suppression of subthalamic firing during high frequency stimulation. Moreover, differences in the resiliency versus vulnerability of inhibitory inputs to the STN and SNr suggest a projection source- and frequency-specificity for this mechanism. The feasibility of targeting electrophysiologically-identified neural structures may provide insight into how DBS achieves frequency-specific modulation of neuronal projections.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Microelectrodes , Parkinson Disease/therapy , Substantia Nigra , Subthalamic Nucleus/physiology
11.
Sci Data ; 9(1): 503, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35977957

ABSTRACT

Provenance is information describing the lineage of an object, such as a dataset or biological material. Since these objects can be passed between organizations, each organization can document only parts of the objects life cycle. As a result, interconnection of distributed provenance parts forms distributed provenance chains. Dependant on the actual provenance content, complete provenance chains can provide traceability and contribute to reproducibility and FAIRness of research objects. In this paper, we define a lightweight provenance model based on W3C PROV that enables generation of distributed provenance chains in complex, multi-organizational environments. The application of the model is demonstrated with a use case spanning several steps of a real-world research pipeline - starting with the acquisition of a specimen, its processing and storage, histological examination, and the generation/collection of associated data (images, annotations, clinical data), ending with training an AI model for the detection of tumor in the images. The proposed model has become an open conceptual foundation of the currently developed ISO 23494 standard on provenance for biotechnology domain.

12.
Stud Health Technol Inform ; 294: 415-416, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35612111

ABSTRACT

The distributed nature of modern research emphasizes the importance of collecting and sharing the history of digital and physical material, to improve the reproducibility of experiments and the quality and reusability of results. Yet, the application of the current methodologies to record provenance information is largely scattered, leading to silos of provenance information at different granularities. To tackle this fragmentation, we developed the Common Provenance Model, a set of guidelines for the generation of interoperable provenance information, and to allow the reconstruction and the navigation of a continuous provenance chain. This work presents the first version of the model, available online, based on the W3C PROV Data Model and the Provenance Composition pattern.


Subject(s)
Biological Science Disciplines , Reproducibility of Results
13.
Exp Neurol ; 351: 114008, 2022 05.
Article in English | MEDLINE | ID: mdl-35149118

ABSTRACT

Accelerating technological progress in experimental neuroscience is increasing the scale as well as specificity of both observational and perturbational approaches to study circuit physiology. While these techniques have also been used to study disease mechanisms, a wider adoption of these approaches in the field of experimental neurology would greatly facilitate our understanding of neurological dysfunctions and their potential treatments at cellular and circuit level. In this review, we will introduce classic and novel methods ranging from single-cell electrophysiological recordings to state-of-the-art calcium imaging and cell-type specific optogenetic or chemogenetic stimulation. We will focus on their application in rodent models of Parkinson's disease while also presenting their use in the context of motor control and basal ganglia function. By highlighting the scope and limitations of each method, we will discuss how they can be used to study pathophysiological mechanisms at local and global circuit levels and how novel frameworks can help to bridge these scales.


Subject(s)
Deep Brain Stimulation , Neurology , Parkinson Disease , Animals , Basal Ganglia/physiology , Optogenetics , Parkinson Disease/therapy , Rodentia
14.
Metabolites ; 11(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34564454

ABSTRACT

In clinical diagnostics and research, blood samples are one of the most frequently used materials. Nevertheless, exploring the chemical composition of human plasma and serum is challenging due to the highly dynamic influence of pre-analytical variation. A prominent example is the variability in pre-centrifugation delay (time-to-centrifugation; TTC). Quality indicators (QI) reflecting sample TTC are of utmost importance in assessing sample history and resulting sample quality, which is essential for accurate diagnostics and conclusive, reproducible research. In the present study, we subjected human blood to varying TTCs at room temperature prior to processing for plasma or serum preparation. Potential sample QIs were identified by Ultra high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) based metabolite profiling in samples from healthy volunteers (n = 10). Selected QIs were validated by a targeted MS/MS approach in two independent sets of samples from patients (n = 40 and n = 70). In serum, the hypoxanthine/guanosine (HG) and hypoxanthine/inosine (HI) ratios demonstrated high diagnostic performance (Sensitivity/Specificity > 80%) for the discrimination of samples with a TTC > 1 h. We identified several eicosanoids, such as 12-HETE, 15-(S)-HETE, 8-(S)-HETE, 12-oxo-HETE, (±)13-HODE and 12-(S)-HEPE as QIs for a pre-centrifugation delay > 2 h. 12-HETE, 12-oxo-HETE, 8-(S)-HETE, and 12-(S)-HEPE, and the HI- and HG-ratios could be validated in patient samples.

15.
Sci Adv ; 7(25)2021 Jun.
Article in English | MEDLINE | ID: mdl-34134979

ABSTRACT

In cortical microcircuits, it is generally assumed that fast-spiking parvalbumin interneurons mediate dense and nonselective inhibition. Some reports indicate sparse and structured inhibitory connectivity, but the computational relevance and the underlying spatial organization remain unresolved. In the rat superficial presubiculum, we find that inhibition by fast-spiking interneurons is organized in the form of a dominant super-reciprocal microcircuit motif where multiple pyramidal cells recurrently inhibit each other via a single interneuron. Multineuron recordings and subsequent 3D reconstructions and analysis further show that this nonrandom connectivity arises from an asymmetric, polarized morphology of fast-spiking interneuron axons, which individually cover different directions in the same volume. Network simulations assuming topographically organized input demonstrate that such polarized inhibition can improve head direction tuning of pyramidal cells in comparison to a "blanket of inhibition." We propose that structured inhibition based on asymmetrical axons is an overarching spatial connectivity principle for tailored computation across brain regions.

16.
Front Neurosci ; 14: 712, 2020.
Article in English | MEDLINE | ID: mdl-32765213

ABSTRACT

Understanding how neural networks generate activity patterns and communicate with each other requires monitoring the electrical activity from many neurons simultaneously. Perfectly suited tools for addressing this challenge are genetically encoded voltage indicators (GEVIs) because they can be targeted to specific cell types and optically report the electrical activity of individual, or populations of neurons. However, analyzing and interpreting the data from voltage imaging experiments is challenging because high recording speeds and properties of current GEVIs yield only low signal-to-noise ratios, making it necessary to apply specific analytical tools. Here, we present NOSA (Neuro-Optical Signal Analysis), a novel open source software designed for analyzing voltage imaging data and identifying temporal interactions between electrical activity patterns of different origin. In this work, we explain the challenges that arise during voltage imaging experiments and provide hands-on analytical solutions. We demonstrate how NOSA's baseline fitting, filtering algorithms and movement correction can compensate for shifts in baseline fluorescence and extract electrical patterns from low signal-to-noise recordings. NOSA allows to efficiently identify oscillatory frequencies in electrical patterns, quantify neuronal response parameters and moreover provides an option for analyzing simultaneously recorded optical and electrical data derived from patch-clamp or other electrode-based recordings. To identify temporal relations between electrical activity patterns we implemented different options to perform cross correlation analysis, demonstrating their utility during voltage imaging in Drosophila and mice. All features combined, NOSA will facilitate the first steps into using GEVIs and help to realize their full potential for revealing cell-type specific connectivity and functional interactions.

17.
Elife ; 82019 11 19.
Article in English | MEDLINE | ID: mdl-31742558

ABSTRACT

Comparing neuronal microcircuits across different brain regions, species and individuals can reveal common and divergent principles of network computation. Simultaneous patch-clamp recordings from multiple neurons offer the highest temporal and subthreshold resolution to analyse local synaptic connectivity. However, its establishment is technically complex and the experimental performance is limited by high failure rates, long experimental times and small sample sizes. We introduce an in vitro multipatch setup with an automated pipette pressure and cleaning system facilitating recordings of up to 10 neurons simultaneously and sequential patching of additional neurons. We present hardware and software solutions that increase the usability, speed and data throughput of multipatch experiments which allowed probing of 150 synaptic connections between 17 neurons in one human cortical slice and screening of over 600 connections in tissue from a single patient. This method will facilitate the systematic analysis of microcircuits and allow unprecedented assessment of inter-individual variability.


Subject(s)
Brain/physiology , Neurons/physiology , Patch-Clamp Techniques , Humans , Nerve Net/physiology , Software
18.
Curr Biol ; 29(21): 3611-3621.e3, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31630955

ABSTRACT

Slow-wave rhythms characteristic of deep sleep oscillate in the delta band (0.5-4 Hz) and can be found across various brain regions in vertebrates. Across phyla, however, an understanding of the mechanisms underlying oscillations and how these link to behavior remains limited. Here, we discover compound delta oscillations in the sleep-regulating R5 network of Drosophila. We find that the power of these slow-wave oscillations increases with sleep need and is subject to diurnal variation. Optical multi-unit voltage recordings reveal that single R5 neurons get synchronized by activating circadian input pathways. We show that this synchronization depends on NMDA receptor (NMDAR) coincidence detector function, and that an interplay of cholinergic and glutamatergic inputs regulates oscillatory frequency. Genetically targeting the coincidence detector function of NMDARs in R5, and thus the uncovered mechanism underlying synchronization, abolished network-specific compound slow-wave oscillations. It also disrupted sleep and facilitated light-induced wakening, establishing a role for slow-wave oscillations in regulating sleep and sensory gating. We therefore propose that the synchronization-based increase in oscillatory power likely represents an evolutionarily conserved, potentially "optimal," strategy for constructing sleep-regulating sensory gates.


Subject(s)
Drosophila melanogaster/physiology , Nerve Net/physiology , Sleep, Slow-Wave/physiology , Animals , Female
19.
Biopreserv Biobank ; 17(5): 458-467, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31339743

ABSTRACT

The scientific impact of translational biomedical research largely depends on the availability of high-quality biomaterials. However, evidence-based and robust quality indicators (QIs) covering the most relevant preanalytical variations are still lacking. The aim of this study was to identify and validate a QI suitable for assessing time-to-centrifugation (TTC) delays in human liquid biospecimens originating from both healthy and diseased individuals. Serum and plasma samples with varying TTCs were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in a pilot cohort of healthy individuals to identify a suitable QI candidate. Taurine (TAU), as a TTC QI candidate, was validated in healthy individuals and patients with rheumatologic and cardiologic diseases, considering the (1) preanalytical handling temperature, (2) platelet count, and (3) postcentrifugation delay. For discrimination of high TTC (TTC >60 minutes) from low TTC serum specimens, a probability calculation tool was developed (Triple-T-cutoff-model). TTC-dependent changes in healthy individuals were observed for amino acids, particularly TAU. Validation of the TAU levels in an independent cohort of healthy individuals revealed a time-dependent increase in serum, but not in plasma, for a TTC delay of 30-240 minutes. TAU increases were dependent on the handling temperature and platelet count and volume. By contrast, no changes in TAU concentrations were observed for additional postcentrifugation delays. Validation of TAU and the Triple-T-cutoff-model, in rheumatologic/cardiologic patient collectives, allowed the discrimination of samples with TTC ≤60 min/>60 min with estimated AUROC (area under the receiver operating characteristic curve) values of 89% [78%-100%]/86% [71%-100%] and 91% [79%-100%]/84% [68%-100%], respectively. Considering the preanalytical handling temperature and platelet count and volume, TAU and the Triple-T-cutoff-model represent reliable QIs for TTC >60 minutes in serum samples from healthy individuals and selected rheumatologic/cardiologic patients. However, further studies in larger patient collectives with various diseases are needed to assess the robustness and potential of the QIs presented in this article as biobanking quality assurance/quality control tools to support high-quality biomedical research.


Subject(s)
Blood Banks/standards , Heart Diseases/blood , Rheumatic Diseases/blood , Taurine/blood , Adult , Blood Specimen Collection/methods , Case-Control Studies , Chromatography, Liquid , Evidence-Based Medicine , Female , Humans , Male , Middle Aged , Pilot Projects , Rheumatic Diseases/metabolism , Serum/chemistry , Tandem Mass Spectrometry , Workflow
20.
J Neurosci ; 39(13): 2470-2481, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30700533

ABSTRACT

Adaptive motor control critically depends on the interconnected nuclei of the basal ganglia in the CNS. A pivotal element of the basal ganglia is the subthalamic nucleus (STN), which serves as a therapeutic target for deep brain stimulation (DBS) in movement disorders, such as Parkinson's disease. The functional connectivity of the STN at the microcircuit level, however, still requires rigorous investigation. Here we combine multiple simultaneous whole-cell recordings with extracellular stimulation and post hoc neuroanatomical analysis to investigate intrinsic and afferent connectivity and synaptic properties of the STN in acute brain slices obtained from rats of both sexes. Our data reveal an absence of intrinsic connectivity and an afferent innervation with low divergence, suggesting that STN neurons operate as independent processing elements driven by upstream structures. Hence, synchrony in the STN, a hallmark of motor processing, exclusively depends on the interactions and dynamics of GABAergic and glutamatergic afferents. Importantly, these inputs are subject to differential short-term depression when stimulated at high, DBS-like frequencies, shifting the balance of excitation and inhibition toward inhibition. Thus, we present a mechanism for fast yet transient decoupling of the STN from synchronizing afferent control. Together, our study provides new insights into the microcircuit organization of the STN by identifying its neurons as parallel processing units and thus sets new constraints for future computational models of the basal ganglia. The observed differential short-term plasticity of afferent inputs further offers a basis to better understand and optimize DBS algorithms.SIGNIFICANCE STATEMENT The subthalamic nucleus (STN) is a pivotal element of the basal ganglia and serves as target for deep brain stimulation, but information on the functional connectivity of its neurons is limited. To investigate the STN microcircuitry, we combined multiple simultaneous patch-clamp recordings and neuroanatomical analysis. Our results provide new insights into the synaptic organization of the STN identifying its neurons as parallel processing units and thus set new constraints for future computational models of the basal ganglia. We further find that synaptic dynamics of afferent inputs result in a rapid yet transient decoupling of the STN when stimulated at high frequencies. These results offer a better understanding of deep brain stimulation mechanisms, promoting the development of optimized algorithms.


Subject(s)
Neurons/physiology , Subthalamic Nucleus/physiology , Synapses/physiology , Action Potentials , Animals , Basal Ganglia/physiology , Deep Brain Stimulation , Electric Stimulation , Female , GABAergic Neurons/physiology , Glutamic Acid/physiology , Male , Neural Pathways/cytology , Neural Pathways/physiology , Neuronal Plasticity , Neurons/cytology , Rats, Wistar , Subthalamic Nucleus/cytology , Synaptic Potentials
SELECTION OF CITATIONS
SEARCH DETAIL
...