Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Heart Assoc ; 11(11): e023482, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35658478

ABSTRACT

Background Methadone is associated with a disproportionate risk of sudden death and ventricular tachyarrhythmia despite only modest inhibition of delayed rectifier K+ current (IKr), the principal mechanism of drug-associated arrhythmia. Congenital defects of inward rectifier K+ current (IK1) have been linked to increased U-wave amplitude on ECG and fatal arrhythmia. We hypothesized that methadone may also be a potent inhibitor of IK1, contributing to delayed repolarization and manifesting on surface ECGs as augmented U-wave integrals. Methods and Results Using a whole-cell voltage clamp, methadone inhibited both recombinant and native IK1 with a half-maximal inhibitory concentration IC50) of 1.5 µmol/L, similar to that observed for IKr block (half-maximal inhibitory concentration of 2.9 µmol/L). Methadone modestly increased the action potential duration at 90% repolarization and slowed terminal repolarization at low concentrations. At higher concentrations, action potential duration at 90% repolarization lengthening was abolished, but its effect on terminal repolarization rose steadily and correlated with increased fluctuations of diastolic membrane potential. In parallel, patient ECGs were analyzed before and after methadone initiation, with 68% of patients having a markedly increased U-wave integral compared with premethadone (lead V3; mean +38%±15%, P=0.016), along with increased QT and TPeak to TEnd intervals, likely reflective of IKr block. Conclusions Methadone is a potent IK1 inhibitor that causes augmentation of U waves on surface ECG. We propose that increased membrane instability resulting from IK1 block may better explain methadone's arrhythmia risk beyond IKr inhibition alone. Drug-induced augmentation of U waves may represent evidence of blockade of multiple repolarizing ion channels, and evaluation of the effect of that agent on IK1 may be warranted.


Subject(s)
Myocytes, Cardiac , Potassium , Action Potentials , Arrhythmias, Cardiac , Electrocardiography , Humans , Methadone/pharmacology
2.
Front Med (Lausanne) ; 9: 1109541, 2022.
Article in English | MEDLINE | ID: mdl-36743666

ABSTRACT

The U.S. Food and Drug Administration (FDA) Division of Applied Regulatory Science (DARS) moves new science into the drug review process and addresses emergent regulatory and public health questions for the Agency. By forming interdisciplinary teams, DARS conducts mission-critical research to provide answers to scientific questions and solutions to regulatory challenges. Staffed by experts across the translational research spectrum, DARS forms synergies by pulling together scientists and experts from diverse backgrounds to collaborate in tackling some of the most complex challenges facing FDA. This includes (but is not limited to) assessing the systemic absorption of sunscreens, evaluating whether certain drugs can convert to carcinogens in people, studying drug interactions with opioids, optimizing opioid antagonist dosing in community settings, removing barriers to biosimilar and generic drug development, and advancing therapeutic development for rare diseases. FDA tasks DARS with wide ranging issues that encompass regulatory science; DARS, in turn, helps the Agency solve these challenges. The impact of DARS research is felt by patients, the pharmaceutical industry, and fellow regulators. This article reviews applied research projects and initiatives led by DARS and conducts a deeper dive into select examples illustrating the impactful work of the Division.

4.
J Bacteriol ; 194(17): 4642-51, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22753061

ABSTRACT

Cyclic dimeric GMP (c-di-GMP) regulates numerous processes in Gram-negative bacteria, yet little is known about its role in Gram-positive bacteria. Here we characterize two c-di-GMP phosphodiesterases from the filamentous high-GC Gram-positive actinobacterium Streptomyces coelicolor, involved in controlling colony morphology and development. A transposon mutation in one of the two phosphodiesterase genes, SCO0928, hereby designated rmdA (regulator of morphology and development A), resulted in decreased levels of spore-specific gray pigment and a delay in spore formation. The RmdA protein contains GGDEF-EAL domains arranged in tandem and possesses c-di-GMP phosphodiesterase activity, as is evident from in vitro enzymatic assays using the purified protein. RmdA contains a PAS9 domain and is a hemoprotein. Inactivation of another GGDEF-EAL-encoding gene, SCO5495, designated rmdB, resulted in a phenotype identical to that of the rmdA mutant. Purified soluble fragment of RmdB devoid of transmembrane domains also possesses c-di-GMP phosphodiesterase activity. The rmdA rmdB double mutant has a bald phenotype and is impaired in aerial mycelium formation. This suggests that RmdA and RmdB functions are additive and at least partially overlapping. The rmdA and rmdB mutations likely result in increased local pools of intracellular c-di-GMP, because intracellular c-di-GMP levels in the single mutants did not differ significantly from those of the wild type, whereas in the double rmdA rmdB mutant, c-di-GMP levels were 3-fold higher than those in the wild type. This study highlights the importance of c-di-GMP-dependent signaling in actinomycete colony morphology and development and identifies two c-di-GMP phosphodiesterases controlling these processes.


Subject(s)
Cyclic GMP/analogs & derivatives , Phosphoric Diester Hydrolases/metabolism , Streptomyces coelicolor/genetics , Streptomyces coelicolor/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic GMP/metabolism , DNA Transposable Elements , Gene Expression Regulation, Bacterial , Mutation , Phosphoric Diester Hydrolases/genetics , Spores, Bacterial/genetics , Spores, Bacterial/metabolism , Streptomyces coelicolor/cytology , Streptomyces coelicolor/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...