Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Lett ; 365(13)2018 07 01.
Article in English | MEDLINE | ID: mdl-29762699

ABSTRACT

Pectinatella magnifica is a freshwater bryozoan, which has become a subject of scientific interest because of its invasive expansion worldwide. To obtain a comprehensive overview of its influence on environments, information on associated bacteria is needed. In this study, cultivable bacteria associated with P. magnifica were investigated. In total, 253 isolates were selected for preliminary identification by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and clustered based on repetitive extragenic palindromic-PCR profiles. Among these, 169 strains were selected and identified using 16S rRNA gene comparative analyses. The sequences were grouped into 76 phylotypes and affiliated with 67 species. The majority of isolated bacteria belonged to Gammaproteobacteria, followed by Betaproteobacteria, Firmicutes, Bacteroidetes and Actinobacteria. Most strains within the Betaproteobacteria were isolated exclusively from bryozoan colonies. Aeromonas was the genus predominantly isolated from both P. magnifica and the water samples. Based on 16S rDNA similarity values, 15 putative new species belonging to the genera Aeromonas, Aquitalea, Clostridium, Herbaspirillum, Chromobacterium, Chryseobacterium, Morganella, Paludibacterium, Pectobacterium, Rahnella, Rhodoferax and Serratia, and putative new genera belonging to families Clostridiaceae and Sporomusaceae were revealed. The majority of the detected bacteria were species widely distributed in the environments; nevertheless, a possible symbiotic association of two new putative species with P. magnifica cannot be excluded.


Subject(s)
Betaproteobacteria/classification , Betaproteobacteria/isolation & purification , Bryozoa/microbiology , Firmicutes/classification , Firmicutes/isolation & purification , Fresh Water/microbiology , Gammaproteobacteria/classification , Gammaproteobacteria/isolation & purification , Animals , Betaproteobacteria/genetics , Betaproteobacteria/growth & development , Czech Republic , Firmicutes/genetics , Firmicutes/growth & development , Gammaproteobacteria/genetics , Gammaproteobacteria/growth & development , Phylogeny
2.
Int J Syst Evol Microbiol ; 67(8): 2842-2847, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28820091

ABSTRACT

A slightly irregular, short rod-shaped bacterial strain, MOZIV/2T, showing activity of fructose 6-phosphate phosphoketolase was isolated from the oral cavity of a home-bred guinea-pig. Based on comparative 16S rRNA gene sequence analyses, its closest relatives were Alloscardovia omnicolens DSM 21503T and Alloscardovia criceti DSM 17774T with 96.0 and 95.6 % pairwise similarities, respectively. Completeness of the compared sequences was 97.3 and 96.9 %, respectively. Growth was found only under anaerobic conditions. Activities of α- and ß-gluco(galacto)sidases were detected in strain MOZIV/2T, which is characteristic for almost all members of the family Bifidobacteriaceae. Sequencing of other molecular markers (fusA, gyrB and xfp) revealed low gene sequence similarities to A. omnicolens DSM 21503T ranging from 72.7 to 87.5 %. Strain MOZIV/2T differed from other species within the genus Alloscardovia by the presence of C18 : 1ω9t. In addition, much higher proportions of C8 : 0, C11 : 0, C12 : 0, C14 : 1, C16 : 1 and C17 : 0 fatty acids were found in cells of strain MOZIV/2T. The peptidoglycan structure was of type A4α [l-Lys(l-Orn)-d-Asp], which is consistent with its classification within the genus Alloscardovia. The DNA G+C content (45.8 mol%) was lower than those found in other alloscardovia. Phylogenetic studies and evaluation of phenotypic characteristics including the results of biochemical, physiological and chemotaxonomic analyses confirmed the novel species status for strain MOZIV/2T, for which the name Alloscardovia venturai sp. nov. is proposed. The type strain is MOZIV/2T (=DSM 100237T=CCM 8604T=LMG 28781T).


Subject(s)
Actinobacteria/classification , Aldehyde-Lyases/metabolism , Guinea Pigs/microbiology , Mouth/microbiology , Phylogeny , Actinobacteria/genetics , Actinobacteria/isolation & purification , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fructose , Genes, Bacterial , Peptidoglycan/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
Int J Syst Evol Microbiol ; 67(8): 2903-2909, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28820096

ABSTRACT

A Gram-stain-positive, facultatively anaerobic, and catalase- and oxidase-negative bacterial strain designated MOZM2T, having 98.4 % 16S rRNA gene sequence identity with Lactobacillus reuteri DSM 20016T, was isolated from a swab of the oral cavity of a home-bred guinea pig. Comparative analyses based on the hsp60, pheS and tuf genes confirmed L. reuteri as its closest relative species, with calculated sequence similarities of 92.8, 88.8 and 96.9 %, respectively. DNA-DNA hybridisation revealed a 42 % degree of genetic similarity between the novel strain and L. reuteri DSM 20016T. Strain MOZM2T degrades carbohydrates via the 6-phosphogluconate/phosphoketolase pathway, evidenced by its production of gas from glucose and the end products of hexose catabolism. Comparative analysis of the cellular fatty acid profiles determined significant differences between MOZM2T and L. reuteri DSM 20016T in their proportions of C8 : 0, C14 : 1, C17 : 0, C18 : 2ω6t and C20 : 0 fatty acids. Results of genotypic analyses also demonstrated differences between these two strains. They also differed in DNA G+C content, and some biochemical and physiological characteristics. We therefore believe that the examined bacterial isolate should be considered as a new taxon within the group of obligately heterofermentative lactobacilli. The species name Lactobacillus caviae sp. nov. is proposed, of which the type strain is MOZM2T (=CCM 8609T=DSM 100239T=LMG 28780T).


Subject(s)
Guinea Pigs/microbiology , Lactobacillus/classification , Mouth/microbiology , Phylogeny , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fermentation , Genes, Bacterial , Lactobacillus/genetics , Lactobacillus/isolation & purification , Nucleic Acid Hybridization , Peptidoglycan/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
4.
Curr Microbiol ; 74(11): 1324-1331, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28756573

ABSTRACT

Occurrence of bifidobacteria, known as health-promoting probiotic microorganisms, in the digestive tract of wild pigs (Sus scrofa) has not been examined yet. One hundred forty-nine fructose-6-phosphate phosphoketolase positive bacterial strains were isolated from colonic content of twenty-two individuals of wild pigs originated from four localities in the Czechia. Based on PCR-DGGE technique targeting the variable V3 region of the 16S rRNA genes, strains were initially differentiated into four groups represented by: (i) probably a new Bifidobacterium species (89 strains), (ii) B. boum/B. thermophilum/B. thermacidophilum subsp. porcinum/B. thermacidophilum subsp. thermacidophilum (sub)species (49 strains), (iii) Pseudoscardovia suis (7 strains), and (iv) B. pseudolongum subsp. globosum/B. pseudolongum subsp. pseudolongum (4 strains), respectively. Given the fact that DGGE technique did not allow to differentiate the representatives of thermophilic bifidobacteria and B. pseudolongum subspecies, strains were further classified by the 16S rRNA and thrS gene sequences. Primers targeting the variable regions of the latter gene were designed to be applicable in identification and phylogeny of Bifidobacteriaceae family. The 16S rRNA-derived phylogenetic study classified members of the first group into five subgroups in a separated cluster of thermophilic bifidobacteria. Comparable results were obtained by the thrS-derived phylogenetic analysis. Remarkably, variability among thrS sequences was higher compared with 16S rRNA gene sequences. Overall, molecular genetic techniques application allowed to identify a new Bifidobacterium phylotype which is predominant in the digestive tract of examined wild pigs.


Subject(s)
Animals, Wild , Bifidobacterium/classification , Bifidobacterium/genetics , Molecular Typing , Sus scrofa/microbiology , Animals , Bifidobacterium/chemistry , Bifidobacterium/isolation & purification , Gastrointestinal Tract/microbiology , Genes, Bacterial , Molecular Typing/methods , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Swine
5.
Food Funct ; 7(8): 3531-8, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27435508

ABSTRACT

Adhesion to the intestinal epithelium is considered an important feature of probiotic bacteria, which may increase their persistence in the intestine, allowing them to exert their beneficial health effect or promote the colonisation process. However, this feature might be largely dependent on the host specificity or diet. In the present study, we investigated the effect of selected milks and milk protein fractions on the ability of selected lactobacilli to adhere to the cells of an intestinal model based on co-culture Caco-2/HT29-MTX cell lines. Most milk digesta did not significantly affect bacterial adhesion except for UHT-treated milk and sheep milk. The presence of UHT-treated milk digesta reduced the adhesion of Lactobacillus gasseri R by 61% but not that of Lactobacillus casei FMP. However, sheep milk significantly increased the adherence of L. casei FMP (P < 0.05) but not of L. gasseri R. Among the protein fractions, rennet casein (RCN) and bovine serum albumin (BSA) showed reproducible patterns and strain-specific effects on bacterial adherence. While RCN reduced the adherence of L. gasseri R to <50% compared to the control, it did not have a significant effect on L. casei FMP. In contrast, BSA reduced L. casei FMP adherence to a higher extent than that of L. gasseri R. Whey protein (WH) tended to increase the adherence of both strains by 130%-180%. Recently, interactions between the host diet and its microbiota have attracted considerable interest. Our results may explain one of the aspects of the role of milk in the development of microbiota or support of probiotic supplements. Based on our data, we conclude that the persistence of probiotic strains supplemented as part of dairy food or constitutional microbiota in the gut might be affected negatively or positively by the food matrix through complex strain or concentration dependent effects.


Subject(s)
Bacterial Adhesion/drug effects , Lacticaseibacillus casei/drug effects , Lactobacillus gasseri/drug effects , Milk Proteins/pharmacology , Milk/chemistry , Milk/microbiology , Animals , Caco-2 Cells , Cell Survival/drug effects , Coculture Techniques , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelium/drug effects , Epithelium/metabolism , HT29 Cells , Host Specificity/drug effects , Humans , Intestinal Mucosa/metabolism , Intestines/cytology , Intestines/drug effects , Sheep
6.
Anaerobe ; 34: 27-33, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25865525

ABSTRACT

Various culture media have been proposed for the isolation and selective enumeration of bifidobacteria. Mupirocin is widely used as a selective factor along with glacial acetic acid. TOS (transgalactosylated oligosaccharides) medium supplemented with mupirocin is recommended by the International Dairy Federation for the detection of bifidobacteria in fermented milk products. Mupirocin media with acetic acid are also reliable for intestinal samples in which bifidobacteria predominate. However, for complex samples containing more diverse microbiota, the selectivity of mupirocin media is limited. Resistance to mupirocin has been demonstrated by many anaerobic bacteria, especially clostridia. The objective was to identify an antibiotic that inhibits the growth of clostridia and allows the growth of bifidobacteria, and to use the identified substance to develop a selective cultivation medium for bifidobacteria. The susceptibility of bifidobacteria and clostridia to 12 antibiotics was tested on agar using the disk diffusion method. Only norfloxacin inhibited the growth of clostridia and did not affect the growth of bifidobacteria. Using both pure cultures and faecal samples from infants, adults, calves, lambs, and piglets, the optimal concentration of norfloxacin in solid cultivation media was determined to be 200 mg/L. Our results showed that solid medium containing norfloxacin (200 mg/L) in combination with mupirocin (100 mg/L) and glacial acetic acid (1 mL/L) is suitable for the enumeration and isolation of bifidobacteria from faecal samples of different origins.


Subject(s)
Acetic Acid/metabolism , Bacteriological Techniques/methods , Bifidobacterium/growth & development , Bifidobacterium/isolation & purification , Culture Media/chemistry , Mupirocin/metabolism , Norfloxacin/metabolism , Adult , Animals , Cattle , Humans , Infant , Microbial Sensitivity Tests , Middle Aged , Ships , Swine
7.
J Microbiol Methods ; 109: 106-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25542994

ABSTRACT

An international standard already exists for the selective enumeration of bifidobacteria in milk products. This standard uses Transgalactosylated oligosaccharides (TOS) propionate agar supplemented with mupirocin. However, no such standard method has been described for the selective enumeration of bifidobacteria in probiotic supplements, where the presence of bifidobacteria is much more variable than in milk products. Therefore, we enumerated bifidobacteria by colony count technique in 13 probiotic supplements using three media supplemented with mupirocin (Mup; 100mg/l): TOS, Bifidobacteria selective medium (BSM) and modified Wilkins-Chalgren anaerobe agar with soya peptone (WSP). Moreover, the potential growth of bifidobacterial strains often used in probiotic products was performed in these media. All 13 products contained members of the genus Bifidobacterium, and tested mupirocin media were found to be fully selective for bifidobacteria. However, the type strain Bifidobacterium bifidum DSM 20456 and collection strain B. bifidum DSM 20239 showed statistically significant lower counts on TOS Mup media, compared to BSM Mup and WSP Mup media. Therefore, the TOS Mup medium recommended by the ISO standard cannot be regarded as a fully selective and suitable medium for the genus Bifidobacterium. In contrast, the BSM Mup and WSP Mup media supported the growth of all bifidobacterial species.


Subject(s)
Anti-Bacterial Agents/metabolism , Bacterial Load/methods , Bifidobacterium/growth & development , Colony Count, Microbial/methods , Culture Media/chemistry , Mupirocin/metabolism , Probiotics/analysis , Bifidobacterium/drug effects
8.
Folia Microbiol (Praha) ; 57(4): 273-5, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22528302

ABSTRACT

Fecal bacteria from 33 infants (aged 1 to 6 months) were tested for growth on commercial prebiotics. The children were born vaginally (20) or by caesarean section (13). Bifidobacteria, lactobacilli, gram-negative bacteria, Escherichia coli, and total anaerobes in fecal samples were enumerated by selective agars and fluorescence in situ hybridization. The total fecal bacteria were inoculated into cultivation media containing 2 % Vivinal® (galactooligosaccharides-GOS) or Raftilose® P95 (fructooligosaccharides-FOS) as a single carbon source and bacteria were enumerated again after 24 h of anaerobic cultivation. Bifidobacteria dominated, reaching counts of 9-10 log colony-forming units (CFU)/g in 17 children born vaginally and in seven children delivered by caesarean section. In these infants, lactobacilli were more frequently detected and a lower number of E. coli and gram-negative bacteria were determined compared to bifidobacteria-negative infants. Clostridia dominated in children without bifidobacteria, reaching counts from 7 to 9 log CFU/g. Both prebiotics supported all groups of bacteria tested. In children with naturally high counts of bifidobacteria, bifidobacteria dominated also after cultivation on prebiotics, reaching counts from 8.23 to 8.77 log CFU/mL. In bifidobacteria-negative samples, clostridia were supported by prebiotics, reaching counts from 7.17 to 7.69 log CFU/mL. There were no significant differences between bacterial growth on Vivinal® and Raftilose® P95 and counts determined by cultivation and FISH. Prebiotics should selectively stimulate the growth of desirable bacteria such as bifidobacteria and lactobacilli. However, our results showed that commercially available FOS and GOS may stimulate also other fecal bacteria.


Subject(s)
Bacteria/growth & development , Feces/microbiology , Prebiotics/analysis , Bacteria/isolation & purification , Female , Humans , Infant , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...