Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
2.
Mar Biotechnol (NY) ; 24(5): 991-1001, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36071348

ABSTRACT

Spirulina algae (Spirulina platensis) cultivated in geothermally powered photobioreactors is here proposed as a potentially resource efficient, zero-carbon, and nutritious alternative to conventional beef meat. Employing a standard life cycle assessment, environmental impacts of large-scale Spirulina production in this facility are calculated. The production facility is sited in Orka náttúrunnar (ON Power) Geothermal Park, Iceland, and benefits from resource streams accessible through Hellisheiði (Hellisheidi) power station, including renewable electricity for illumination and power usage, hot and cold water streams for thermal management, freshwater for cultivation, and CO2 for biofixation. During cultivation, GHG-intensive ammonia-based fertilizers are replaced with macronutrients sourced from natural open mines. LCA results show that production of 1 kg of wet edible biomass in this facility requires 0.0378 m2 non-arable land, 8.36 m3 fresh water and is carbon neutral with - 0.008 CO2-eq GHG emissions (net zero). Compared with conventionally produced meat from beef cattle, Spirulina algae cultured in the ON Power Geothermal Park, referred to in this study as GeoSpirulina, requires less than 1% land and water and emits less than 1% GHGs. Considering food and nutritional security concerns, cultivation in a controlled environment agriculture system assures consistent nutritional profile year-round. Moreover, GeoSpirulina biomass assessed in this study contains all essential amino acids as well as essential vitamins and minerals. While keeping a balanced nutrition, for every kg beef meat replaced with one kg GeoSpirulina, the average consumer can save ~ 100 kg CO2-eq GHGs. It is concluded that environmental impacts of GeoSpirulina production in the Hellisheidi facility are considerably lower than those of conventionally produced ruminants.


Subject(s)
Spirulina , Amino Acids, Essential/metabolism , Ammonia/metabolism , Animals , Biomass , Carbon/metabolism , Carbon Dioxide/metabolism , Cattle , Environment , Fertilizers , Iceland , Life Cycle Stages , Vitamins/metabolism , Water/metabolism
3.
Foods ; 12(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36613252

ABSTRACT

Europe is dependent on protein-rich crop imports to meet domestic food demand. This has moved the topic of sustainable protein self-sufficiency up the policy agenda. The current study assesses the feasibility of protein self-sufficiency in Iceland, and its capacity to meet Northern Europe's demand, based on industrial-scale cultivation of Spirulina in novel production units. Production units currently operating in Iceland, and laboratory-derived nutritional profile for the Spirulina cultivated, provide the basis for a theoretical protein self-sufficiency model. Integrating installed and potentially installed energy generation data, the model elaborates six production scale-up scenarios. Annual biomass produced is compared with recommended dietary allowance figures for protein and essential amino acids to determine whether Northern Europe's population demands can be met in 2030. Results show that Iceland could be protein self-sufficient under the most conservative scenario, with 20,925 tonnes of Spirulina produced using 15% of currently installed capacity. In a greater allocation of energy capacity used by heavy industry, Iceland could additionally meet the needs of Lithuania, or Latvia, Estonia, Jersey, Isle of Man, Guernsey, and Faroe Islands. Under the most ambitious scenario utilizing planned energy projects, Iceland could support itself plus Denmark, or Finland, or Norway, or Ireland with up to 242,366 tonnes of biomass. On a protein-per-protein basis, each kilogram of Spirulina consumed instead of beef could save 0.315 tonnes CO2-eq. Under the most ambitious scenario, this yields annual savings of 75.1 million tonnes CO2-eq or 7.3% of quarterly European greenhouse gas emissions. Finally, practicalities of production scale-up are discussed.

4.
Food Technol Biotechnol ; 55(3): 360-367, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29089849

ABSTRACT

Bioactivity of cod (Gadus morhua) and chicken (Gallus domesticus) protein hydrolysates before and after in vitro gastrointestinal (GI) digestion was investigated using yeast Saccharomyces cerevisiae as a model organism. Both hydrolysates were exposed to in vitro GI digestion prior to cellular exposure to simulate digestion conditions in the human body and therefore investigate the role of modulations in the GI tract on the cell response. The effect of digested and undigested hydrolysates on intracellular oxidation, cellular metabolic energy and proteome level was investigated. No difference in the effect on intracellular oxidation activity was obtained between cod and chicken hydrolysates, while higher affect on intracellular oxidation was provided by digested hydrolysates, with relative values of intracellular oxidation of cod of (70.2±0.8) and chicken of (74.5±1.4) % than by undigested ones, where values of cod and chicken were (95.5±1.2) and (90.5±0.7) %, respectively. Neither species nor digestion had any effect on cellular metabolic energy. At proteome level, digested hydrolysates gave again significantly stronger responses than undigested counterparts; cod peptides here also gave somewhat stronger response than chicken peptides. The knowledge of the action of food protein hydrolysates and their digests within live cells, also at proteome level, is important for further validation of their activity in higher eukaryotes to develop new functional food ingredients, such as in this case chicken and cod muscle-derived peptides.

5.
J Sci Food Agric ; 96(6): 2125-35, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26138276

ABSTRACT

BACKGROUND: The ability of different in vitro antioxidant assays to predict the efficiency of cod protein hydrolysate (CPH) and Fucus vesiculosus ethyl acetate extract (EA) towards lipid oxidation in haemoglobin-fortified washed cod mince and iron-containing cod liver oil emulsion was evaluated. The progression of oxidation was followed by sensory analysis, lipid hydroperoxides and thiobarbituric acid-reactive substances (TBARS) in both systems, as well as loss of redness and protein carbonyls in the cod system. RESULTS: The in vitro tests revealed high reducing capacity, high DPPH radical scavenging properties and a high oxygen radical absorbance capacity (ORAC) value of the EA which also inhibited lipid and protein oxidation in the cod model system. The CPH had a high metal chelating capacity and was efficient against oxidation in the cod liver oil emulsion. CONCLUSION: The results indicate that the F. vesiculosus extract has a potential as an excellent natural antioxidant against lipid oxidation in fish muscle foods while protein hydrolysates are more promising for fish oil emulsions. The usefulness of in vitro assays to predict the antioxidative properties of new natural ingredients in foods thus depends on the knowledge about the food systems, particularly the main pro-oxidants present.


Subject(s)
Antioxidants , Fish Proteins/chemistry , Food Preservatives/pharmacology , Fucus/chemistry , Plant Extracts/chemistry , Seaweed/chemistry , Animals , Aquatic Organisms , Cod Liver Oil/chemistry , Fishes , Food Preservatives/chemistry , Food Safety , Oxidation-Reduction
6.
J Food Sci ; 76(1): C14-20, 2011.
Article in English | MEDLINE | ID: mdl-21535642

ABSTRACT

Functional and biochemical properties of fish protein hydrolysates (FPH) from blue whiting (BW) were studied. FPH (2.5%, 5%, 10%, and 15% degree of hydrolysis [DH]) were made from isolated proteins from headed and gutted BW with Alcalase 2.4 L. The properties of dried BW mince and protein isolate compared to 4 reference proteins (soy and milk protein) were studied: color, solubility, water-holding capacity (WHC), oil-binding capacity (OBC), emulsion capacity (EC), and emulsion stability (ES). The angiotensin I-converting enzyme (ACE) inhibitory activities of the soluble fraction of BW powders were also investigated. Furthermore, the products were characterized by analyzing their chemical composition. Chemical composition, solubility, OBC, and EC of the BW powders was significantly (P < 0.05) different with different DH, while color, ES, and WHC were not significantly (P > 0.05) different. Salt content of the FPH was high (4% to 19%) and increased with increased DH. Protein solubility varied from 10% to 70% and increased with increased DH. WHC of the FPH was around 97% and was higher than that of all the reference proteins tested. OBC decreased with increased DH (from 3.5 to 2.1 g oil/g protein) and was higher than OBC of the soy and milk proteins (1.6 to 1.9 g oil/g protein). EC of FPH was similar or lower than the reference proteins. ES of FPH (60% to 90%) was similar to or lower than soy and whey proteins (60% to 98%) but higher than casein (20%). ACE inhibition activity increased as DH was increased. Practical Application: The results from this study demonstrate that a functional bioactive hydrolysate can be produced from BW, which is an underutilized fish species, and may aid the industry in better utilizing this raw material. The novelty of this research was the use of BW as a raw material where the protein has been isolated with the pH shift method. Furthermore, it was novel that bioactivity and functionality was measured in the same samples.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Emulsifying Agents/chemistry , Fish Proteins/chemistry , Fish Proteins/metabolism , Food Additives/chemistry , Gadiformes , Protein Hydrolysates/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Chemical Phenomena , Color , Emulsifying Agents/pharmacology , Emulsions , Fish Proteins/isolation & purification , Food Additives/pharmacology , Hydrogen-Ion Concentration , Hydrolysis , Plant Oils/analysis , Protein Hydrolysates/pharmacology , Sodium Chloride, Dietary/analysis , Solubility , Subtilisins/metabolism , Water/analysis
7.
Food Microbiol ; 23(7): 677-83, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16943068

ABSTRACT

In total, 215 commercially processed broiler carcasses were examined to determine optimum cultural enumeration, the effects of freezing, method of thawing, and duration of frozen storage on levels of Campylobacter spp. and fecal coliforms. Enumeration studies compared MPN procedures to direct plating onto selective mCCDA agar and indicated equivalency for quantitation of Campylobacter spp. Levels of Campylobacter and fecal coliforms were subsequently estimated by direct plating of carcass rinses. Freezing of naturally contaminated carcasses followed by storage at -20 degrees C for 31, 73, 122 and 220 days showed statistically significant (P< or =0.05) reductions in Campylobacter counts initially as compared with counts found on fresh product. Among 5 lots of broilers, levels of Campylobacter on carcasses were reduced by log mean values ranging from 0.65 to 2.87 after freezing and 31 days of storage. Similar reductions due to freezing were not observed for fecal coliforms counts. The level of Campylobacter was reduced by approximately one log immediately after freezing, and remained relatively constant during the 31-220 days of frozen storage. The levels were constant during 7 days of refrigerated storage. After 31 days of frozen storage there was a reduced rate in reduction of counts among broilers thawed at 7 degrees C as compared to thawing at 22 degrees C with either cultural method (MPN and mCCDA). These findings warrant consideration of the public health benefits related to freezing contaminated poultry prior to commercial distribution to reduce Campylobacter exposure levels associated with contaminated carcasses.


Subject(s)
Campylobacter/growth & development , Chickens/microbiology , Food Contamination/analysis , Food Handling/methods , Freezing , Animals , Colony Count, Microbial , Consumer Product Safety , Feces/microbiology , Food Microbiology , Humans , Meat/microbiology , Risk Assessment , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL