Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; : 107627, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098536

ABSTRACT

Staphylococcus aureus expresses three high-affinity neutrophil serine protease (NSP) inhibitors known as the extracellular adherence protein domain (EAPs) proteins. Whereas EapH1 and EapH2 are comprised of a single EAP domain, the modular extracellular adherence protein (Eap) from S. aureus strain Mu50 consists of four EAP domains. We recently reported that EapH2 can simultaneously bind and inhibit cathepsin-G (CG) and neutrophil elastase (NE), which are the two most abundant NSPs. This unusual property of EapH2 arises from independent CG and NE-binding sites that lie on opposing faces of its EAP domain. Here we used X-ray crystallography and enzyme assays to show that all four individual domains of Eap (i.e. Eap1, Eap2, Eap3, and Eap4) exhibit an EapH2-like ability to form ternary complexes with CG and NE that inhibit both enzymes simultaneously. We found that Eap1, Eap2, and Eap3 have similar functional profiles insofar as NSP inhibition is concerned, but that Eap4 displays an unexpected ability to inhibit two NE enzymes simultaneously. Using X-ray crystallography, we determined that this second NE-binding site in Eap4 arises through the same region of its EAP domain that also comprises its CG-binding site. Interestingly, small angle X-ray scattering data showed that stable tail-to-tail dimers of the NE/Eap4/NE ternary complex exist in solution. This arrangement is compatible with NSP-binding at all available sites in a two-domain fragment of Eap. Together, our work implies that Eap is a polyvalent inhibitor of NSPs. It also raises the possibility that higher-order structures of NSP-bound Eap may have unique functional properties.

2.
Arch Biochem Biophys ; 758: 110060, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880318

ABSTRACT

Staphylococcus aureus secretes an array of small proteins that inhibit key enzyme-catalyzed reactions necessary for proper function of the human innate immune system. Among these, the Staphylococcal Peroxidase Inhibitor, SPIN, blocks the activity of myeloperoxidase (MPO) and thereby disrupts the HOCl-generating system of neutrophils. Previous studies on S. aureus SPIN have shown that it relies on a C-terminal α-helical bundle domain to mediate initial binding to MPO, but requires a disordered N-terminal region to fold into a ß-hairpin conformation to inhibit MPO activity. To further investigate the structure/function relationship of SPIN, we introduced two cysteine residues into its N-terminal region to trap SPIN in its MPO-bound conformation and characterized the modified protein, which we refer to here as SPIN-CYS. Although control experiments confirmed the presence of the disulfide bond in SPIN-CYS, solution structure determination revealed that the N-terminal region of SPIN-CYS adopted a physically constrained series of lariat-like structures rather than a well-defined ß-hairpin. Nevertheless, SPIN-CYS exhibited a gain in inhibitory potency against human MPO when compared to wild-type SPIN. This gain of function persisted even in the presence of deleterious mutations within the C-terminal α-helical bundle domain. Surface plasmon resonance studies showed that the gain in potency arose through an increase in apparent affinity of SPIN-CYS for MPO, which was driven primarily by an increased association rate with MPO when compared to wild-type SPIN. Together, this work provides new information on the coupled binding and folding events required to manifest biological activity of this unusual MPO inhibitor.


Subject(s)
Disulfides , Peroxidase , Staphylococcus aureus , Staphylococcus aureus/enzymology , Disulfides/chemistry , Disulfides/metabolism , Peroxidase/chemistry , Peroxidase/antagonists & inhibitors , Peroxidase/metabolism , Humans , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Protein Domains , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Cysteine/chemistry , Cysteine/metabolism , Models, Molecular
3.
Arch Biochem Biophys ; 756: 110023, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705227

ABSTRACT

Myeloperoxidase is a critical component of the antibacterial arsenal of neutrophils, whereby it consumes H2O2 as an oxidant to convert halogen and pseudohalogen anions into cytotoxic hypohalous acids. Following phagocytosis by neutrophils, the human pathogen Staphylococcus aureus secretes a potent myeloperoxidase inhibitory protein, called SPIN, as part of its immune evasion repertoire. The matured S. aureus SPIN polypeptide consists of only 73 residues yet contains two functional domains: whereas the 60 residue C-terminal helical bundle domain is responsible for MPO binding, the 13 residue N-terminal domain is required to inhibit MPO. Previous studies have informed understanding of the SPIN N-terminal domain, but comparatively little is known about the helical domain insofar as the contribution of individual residues is concerned. To address this limitation, we carried out a residue-level structure/function investigation on the helical bundle domain of S. aureus SPIN. Using sequence conservation and existing structures of SPIN bound to human MPO as a guide, we selected residues L49, E50, H51, E52, Y55, and Y75 for interrogation by site-directed mutagenesis. We found that loss of L49 or E52 reduced SPIN activity by roughly an order of magnitude, but that loss of Y55 or H51 caused progressively greater loss of inhibitory potency. Direct binding studies by SPR showed that loss of inhibitory potency in these SPIN mutants resulted from a diminished initial interaction between the inhibitor and MPO. Together, our studies provide new insights into the structure/function relationships of SPIN and identify positions Y55 and H51 as critical determinants of SPIN function.


Subject(s)
Peroxidase , Staphylococcus aureus , Staphylococcus aureus/enzymology , Humans , Peroxidase/chemistry , Peroxidase/metabolism , Peroxidase/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Protein Domains , Amino Acid Sequence , Mutagenesis, Site-Directed , Models, Molecular , Protein Conformation, alpha-Helical
4.
Insect Biochem Mol Biol ; 168: 104109, 2024 May.
Article in English | MEDLINE | ID: mdl-38494145

ABSTRACT

Transferrin 1 (Tsf1) is an insect-specific iron-binding protein that is abundant in hemolymph and other extracellular fluids. It binds iron tightly at neutral pH and releases iron under acidic conditions. Tsf1 influences the distribution of iron in the body and protects against infection. Elucidating the mechanisms by which Tsf1 achieves these functions will require an understanding of how Tsf1 binds and releases iron. Previously, crystallized Tsf1 from Manduca sexta was shown to have a novel type of iron coordination that involves four iron-binding ligands: two tyrosine residues (Tyr90 and Tyr204), a buried carbonate anion, and a solvent-exposed carbonate anion. The solvent-exposed carbonate anion was bound by a single amino acid residue, a highly conserved asparagine at position 121 (Asn121); thus, we predicted that Asn121 would be essential for high-affinity iron binding. To test this hypothesis, we analyzed the iron-binding and -release properties of five forms of recombinant Tsf1: wild-type, a Y90F/Y204F double mutant (negative control), and three Asn121 mutants (N121A, N121D and N121S). Each of the Asn121 mutants exhibited altered spectral properties, confirming that Asn121 contributes to iron coordination. The N121D and N121S mutations resulted in slightly lower affinity for iron, especially at acidic pH, while iron binding and release by the N121A mutant was indistinguishable from that of the wild-type protein. The surprisingly minor consequences of mutating Asn121, despite its high degree of conservation in diverse insect species, suggest that Asn121 may play a role that is essential in vivo but non-essential for high affinity iron binding in vitro.


Subject(s)
Manduca , Transferrin , Animals , Transferrin/chemistry , Transferrin/genetics , Transferrin/metabolism , Manduca/genetics , Manduca/metabolism , Asparagine , Iron/metabolism , Anions/metabolism , Carbonates/metabolism , Solvents , Binding Sites
5.
J Immunol ; 212(4): 689-701, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38149922

ABSTRACT

The classical pathway (CP) is a potent mechanism for initiating complement activity and is a driver of pathology in many complement-mediated diseases. The CP is initiated via activation of complement component C1, which consists of the pattern recognition molecule C1q bound to a tetrameric assembly of proteases C1r and C1s. Enzymatically active C1s provides the catalytic basis for cleavage of the downstream CP components, C4 and C2, and is therefore an attractive target for therapeutic intervention in CP-driven diseases. Although an anti-C1s mAb has been Food and Drug Administration approved, identifying small-molecule C1s inhibitors remains a priority. In this study, we describe 6-(4-phenylpiperazin-1-yl)pyridine-3-carboximidamide (A1) as a selective, competitive inhibitor of C1s. A1 was identified through a virtual screen for small molecules that interact with the C1s substrate recognition site. Subsequent functional studies revealed that A1 dose-dependently inhibits CP activation by heparin-induced immune complexes, CP-driven lysis of Ab-sensitized sheep erythrocytes, CP activation in a pathway-specific ELISA, and cleavage of C2 by C1s. Biochemical experiments demonstrated that A1 binds directly to C1s with a Kd of ∼9.8 µM and competitively inhibits its activity with an inhibition constant (Ki) of ∼5.8 µM. A 1.8-Å-resolution crystal structure revealed the physical basis for C1s inhibition by A1 and provided information on the structure-activity relationship of the A1 scaffold, which was supported by evaluating a panel of A1 analogs. Taken together, our work identifies A1 as a new class of small-molecule C1s inhibitor and lays the foundation for development of increasingly potent and selective A1 analogs for both research and therapeutic purposes.


Subject(s)
Complement C1s , Complement Pathway, Classical , Animals , Sheep , Peptide Hydrolases , Complement C1/metabolism , Endopeptidases , Pyridines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL