Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetologia ; 54(2): 237-44, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20953861

ABSTRACT

Since over-nutrition accelerates the development of obesity, progression to type 2 diabetes, and the associated co-morbidity and mortality, there has been a keen interest in therapeutic interventions targeting mechanisms that may curb appetite, increase energy expenditure or at least attenuate insulin resistance. Over the past decade, numerous peri-mitochondrial targets in the de novo lipid synthesis pathway have been linked to an increase in energy expenditure and the drug development industry has pursued the gene products involved as candidates to develop drugs against. The basis of this link, and specifically the premise that lowering tissue and cellular malonyl-CoA can increase energy expenditure, is scrutinised here. The argument presented is that fuel switching as effected by changes in cellular malonyl-CoA concentrations will not trigger the mitochondria to increase energy expenditure because: (1) an increase in beta-oxidation by lowering respiratory exchange ratio (indicative of the metabolic fuel consumed) does not equal an increase in energy expenditure (how rapidly fuel is consumed); (2) the ATP:oxygen ratios (i.e. ATP energy made:oxygen required for the reaction) are similar when metabolising lipids (2.8) vs glucose (3.0); (3) substrate availability (NEFA) does not drive energy expenditure in vivo; and (4) the availability of ADP in the mitochondrial matrix determines the rate of energy expenditure, not the availability of fuel to enter the mitochondrial matrix. To increase mitochondrial energy expenditure, work must be done (exercise) and/or the mitochondrial proton leak must be enhanced, both of which increase availability of ADP. In fact, despite the historic taboo of chemical uncoupling, this mechanism validated in humans is closest on task to increasing whole-body energy expenditure. Chemical uncoupling mimics the naturally occurring phenomenon of proton leak, accelerating the metabolism of glucose and lipids. However, it is completely non-genomic (i.e. the target is a location, not a gene product) and is not associated with addiction or mood alterations common to satiety agents. A significant hurdle for drug development is to discover a safe mitochondrial uncoupler and to formulate it potentially as a pro-drug and/or oral pump, to avoid the issue of overdosing experienced in the 1930s. The potential therapeutic impact of such a compound for an over-nutritioned patient population could be profound. If effective, the mitochondrial uncoupler mechanism could resolve many of the associated diseases such as type 2 diabetes, hypertension, obesity, depression, sleep apnoea, non-alcoholic steatohepatitis, insulin resistance and hyperlipidaemia, therefore becoming a 'disease-modifying therapy'.


Subject(s)
Energy Metabolism/physiology , Adipose Tissue, Brown/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Humans , Malonyl Coenzyme A/metabolism , Mitochondria/metabolism , Models, Biological
2.
J Muscle Res Cell Motil ; 20(7): 661-8, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10672514

ABSTRACT

Molecular characterization of a novel gene designated Neuroendocrine-Specific Protein-Like-1 (Nspl1) had revealed that this gene is expressed as two transcripts, a 1.2 kb transcript found predominantly in skeletal muscle and a 2.1 kb transcript expressed in the brain. The exceptionally high level of skeletal muscle expression prompted us to determine where the protein is localized to skeletal muscle. In vitro studies were performed using two plasmid constructs that generate full-length Nspl1 muscle-specific protein fused to the green fluorescent protein (GFP). In one construct, the GFP cDNA was fused to the N-terminus of the Nspl1 cDNA while in the second construct, the GFP cDNA was fused to the C-terminus of the Nspl1 cDNA. Transfection of either plasmid into mononucleated myoblasts showed that the Nspl1-GFP chimeric protein was associated with intermediate filaments. This was confirmed by using an antibody to stain desmin and finding that GFP-Nspl1 colocalizes with desmin. Chick primary myoblasts were transfected with the chimeric cDNAs and allowed to differentiate into mature myotubes. Results from this analysis and the use of monoclonal antibody to stain alpha-actinin, further localized the Nspl1 protein to the Z-band of mature myotubes. Confocal microscopy of the myotubes containing Nspl1-GFP demonstrates that Nspl1 is distributed continuously throughout the Z-disks.


Subject(s)
Membrane Proteins , Muscle, Skeletal/metabolism , Nerve Tissue Proteins/metabolism , Animals , Brain/metabolism , Chickens , Gene Expression , Green Fluorescent Proteins , Luminescent Proteins , Mice , Microscopy, Confocal , Muscle Proteins/metabolism , Muscle, Skeletal/ultrastructure , Recombinant Fusion Proteins
3.
Mamm Genome ; 9(4): 274-82, 1998 Apr.
Article in English | MEDLINE | ID: mdl-9530622

ABSTRACT

Because numerous diseases affect the muscle and nervous systems, it is important to identify and characterize genes that may play functional roles in these tissues. Sequence analysis of a 106-kb region of human Chromosome (Chr) 19q13.2 revealed a novel gene with homology to the Neuroendocrine-specific protein (NSP), and it has, therefore, been designated NSP-like 1 (Nspl1). We isolated the mouse homolog of this gene and performed extensive expression analysis of both the mouse and human genes. The mouse Nspl1 gene is alternatively spliced to produce two major transcripts: a 2.1-kb mRNA that is expressed at highest levels in the brain, and a 1.2-kb transcript that is primarily expressed in muscle. The larger message contains 10 exons, whereas the smaller transcript contains 7 exons. The last 6 exons, which are present in both transcripts, share significant amino acid sequence identity with the endoplasmic reticulum-bound portion of NSP. Mouse and human Nspl1/NSPL1 genes have expression patterns that are similar to that of the dystrophin gene. In addition, the putative regulatory domains of Nspl1 appear similar in composition and distribution to the defined dystrophin regulatory sequences.


Subject(s)
Brain/metabolism , Membrane Proteins , Muscle Proteins , Muscle, Skeletal/metabolism , Nerve Tissue Proteins/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , DNA, Complementary , Humans , Mice , Molecular Sequence Data , Regulatory Sequences, Nucleic Acid , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
4.
Proc Natl Acad Sci U S A ; 92(11): 4728-32, 1995 May 23.
Article in English | MEDLINE | ID: mdl-7761391

ABSTRACT

Mice that carry the lethal yellow (Ay) or viable yellow (Avy) mutation, two dominant mutations of the agouti (a) gene in mouse chromosome 2, exhibit a phenotype that includes yellow fur, marked obesity, a form of type II diabetes associated with insulin resistance, and an increased susceptibility to tumor development. Molecular analyses of these and several other dominant "obese yellow" a-locus mutations suggested that ectopic expression of the normal agouti protein gives rise to this complex pleiotropic phenotype. We have now tested this hypothesis directly by generating transgenic mice that ectopically express an agouti cDNA clone encoding the normal agouti protein in all tissues examined. Transgenic mice of both sexes have yellow fur, become obese, and develop hyperinsulinemia. In addition, male transgenic mice develop hyperglycemia by 12-20 weeks of age. These results demonstrate conclusively that the ectopic agouti expression is responsible for most, if not all, of the phenotypic traits of the dominant, obese yellow mutants.


Subject(s)
Aging/physiology , Diabetes Mellitus, Type 2/genetics , Hair Color/genetics , Intercellular Signaling Peptides and Proteins , Obesity/genetics , Protein Biosynthesis , Proteins/genetics , Agouti Signaling Protein , Animals , Base Sequence , Blood Glucose/metabolism , Chromosome Mapping , DNA Primers , Enhancer Elements, Genetic , Exons , Female , Gene Expression , Genes, Dominant , Genes, Lethal , Insulin/blood , Introns , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Transgenic , Molecular Sequence Data , Polymerase Chain Reaction , Promoter Regions, Genetic , Weight Gain/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...