Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Forensic Sci Int ; 348: 111673, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37031011

ABSTRACT

The use of organic peroxides for the preparation of homemade explosives (HMEs) is common among terrorists due to inexpensive precursor chemicals and simple synthetic procedures. Triacetone triperoxide (TATP) is the most notable peroxide explosive, and has been deployed in several terrorist attacks as explosive filling of improvised explosive devices (IEDs). Forensic identification of TATP in pre-blast and post-blast residues, including on-site analysis, poses significant analytical challenges and induces demand for practicable and sensitive detection techniques. This work presents a concept suitable for laboratory and on-site identification of TATP residues in liquid samples (aqueous TATP synthetic waste) and in gas phase. It is based on TATP enrichment from the aqueous or gas phase using different types of passive samplers (polydimethylsiloxane (PDMS) sampling rods and activated carbon sampling tubes (ACST)) and subsequent identification of the explosive by gas chromatography-mass spectrometry (GC-MS) or GC with positive chemical ionization and tandem MS (GC-PCI-MS/MS) analytical techniques. Additionally, investigation of the stability of TATP in aqueous solutions and of the stability of enriched TATP in passive samplers under different storage conditions, as well as development of TATP re-extraction procedures from passive samplers have been performed in this study. The practical use of passive samplers was demonstrated during and after TATP production processes. Moreover, post-blast sampling of TATP under different conditions of controlled blasting events was investigated using the passive sampling concept.

2.
Anal Bioanal Chem ; 415(15): 3007-3031, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37106123

ABSTRACT

A comprehensive physicochemical characterization of heterogeneous nanoplastic (NPL) samples remains an analytical challenge requiring a combination of orthogonal measurement techniques to improve the accuracy and robustness of the results. Here, batch methods, including dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM), as well as separation/fractionation methods such as centrifugal liquid sedimentation (CLS) and field-flow fractionation (FFF)-multi-angle light scattering (MALS) combined with pyrolysis gas chromatography mass spectrometry (pyGC-MS) or Raman microspectroscopy (RM) were evaluated for NPL size, shape, and chemical composition measurements and for quantification. A set of representative/test particles of different chemical natures, including (i) polydisperse polyethylene (PE), (ii) (doped) polystyrene (PS) NPLs, (iii) titanium dioxide, and (iv) iron oxide nanoparticles (spherical and elongated), was used to assess the applicability and limitations of the selected methodologies. Particle sizes and number-based concentrations obtained by orthogonal batch methods (DLS, NTA, TRPS) were comparable for monodisperse spherical samples, while higher deviations were observed for polydisperse, agglomerated samples and for non-spherical particles, especially for light scattering methods. CLS and TRPS offer further insight with increased size resolution, while detailed morphological information can be derived by electron microscopy (EM)-based approaches. Combined techniques such as FFF coupled to MALS and RM can provide complementary information on physical and chemical properties by online measurements, while pyGC-MS analysis of FFF fractions can be used for the identification of polymer particles (vs. inorganic particles) and for their offline (semi)quantification. However, NPL analysis in complex samples will continue to present a serious challenge for the evaluated techniques without significant improvements in sample preparation.

3.
Int J Nanomedicine ; 18: 711-720, 2023.
Article in English | MEDLINE | ID: mdl-36816333

ABSTRACT

Introduction: The role of the human immune system in pathologic responses to chemicals including nanomaterials was identified as a gap in current hazard assessments. However, the complexity of the human immune system as well as interspecies variations make the development of predictive toxicity tests challenging. In the present study, we have analysed to what extent fluctuations of the complement system of different individuals will have an impact on the standardisation of immunological tests. Methods: We treated commercially available pooled sera (PS) from healthy males, individual sera from healthy donors and from patients suffering from cancer, immunodeficiency and allergies with small molecules and liposomes. Changes of iC3b protein levels measured in enzyme-linked immunosorbent assays served as biomarker for complement activation. Results: The level of complement activation in PS differed significantly from responses of individual donors (p < 0.01). Only seven out of 32 investigated sera from healthy donors responded similarly to the pooled serum. This variability was even more remarkable when investigating the effect of liposomes on the complement activation in sera from donors with pre-existing pathologies. Neither the 26 sera of donors with allergies nor sera of 16 donors with immunodeficiency responded similar to the PS of healthy donors. Allergy sufferers showed an increase in iC3b levels of 4.16-fold changes when compared to PS treated with liposomes. Discussion: Our studies demonstrate that the use of pooled serum can lead to an over- or under-estimation of immunological response in particular for individuals with pre-existing pathologies. This is of high relevance when developing medical products based on nanomaterials and asks for a review of the current practice to use PS from healthy donors for the prediction of immunological effects of drugs in patients. A better understanding of individual toxicological responses to xenobiotics should be an essential part in safety assessments.


Subject(s)
Hypersensitivity , Liposomes , Male , Humans , Liposomes/pharmacology , Complement Activation , Immunologic Tests , Complement C3b
4.
Nanomaterials (Basel) ; 12(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35215053

ABSTRACT

In single particle inductively coupled plasma mass spectrometry (spICP-MS), the transport efficiency is fundamental for the correct determination of both particle number concentration and size. In the present study, transport efficiency was systematically determined on three different days with six carefully characterised gold nanoparticle (AuNP) suspensions and in seven European and US expert laboratories using different ICP-MS instruments and spICP-MS software. Both particle size-(TES)-and particle frequency-(TEF)-methods were applied. The resulting transport efficiencies did not deviate much under ideal conditions. The TEF method however systematically resulted in lower transport efficiencies. The extent of this difference (0-300% rel. difference) depended largely on the choice and storage conditions of the nanoparticle suspensions used for the determination. The TES method is recommended when the principal measurement objective is particle size. If the main aim of the measurement is the determination of the particle number concentration, the TEF approach could be preferred as it might better account for particle losses in the sample introduction system.

5.
Colloids Surf B Biointerfaces ; 207: 112037, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34416445

ABSTRACT

Biocompatible coating based on bovine serum albumin (BSA) was applied on two different TiO2 nanoparticles (aeroxide P25 and food grade E171) to investigate properties and stability of resulting TiO2@BSA composites, under the final perspective to create a "Safe-by-Design" coating, able to uniform, level off and mitigate surface chemistry related phenomena, as naturally occurring when nano-phases come in touch with proteins enriched biological fluids. The first step towards validating the proposed approach is a detailed characterization of surface chemistry with the quantification of amount and stability of BSA coating deposited on nanoparticles' surfaces. At this purpose, we implemented an orthogonal multi-techniques characterization platform, providing important information on colloidal behavior, particle size distribution and BSA-coating structure of investigated TiO2 systems. Specifically, the proposed orthogonal approach enabled the quantitative determination of bound and free (not adsorbed) BSA, a key aspect for the design of intentionally BSA coated nano-structures, in nanomedicine and, overall, for the control of nano-surface reactivity. In fact, the BSA-coating strategy developed and the orthogonal characterisation performed can be extended to different designed nanomaterials in order to further investigate the protein-corona formation and promote the implementation of BSA engineered coating as a strategy to harmonize the surface reactivity and minimize the biological impact.


Subject(s)
Nanoparticles , Protein Corona , Nanomedicine , Serum Albumin, Bovine , Surface Properties , Titanium
6.
Food Control ; 120: 107550, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33536722

ABSTRACT

Titanium dioxide is a white colourant authorised as food additive E 171 in the EU, where it is used in a range of alimentary products. As these materials may contain a fraction of particulates with sizes below 100 nm and current EU regulation requires specific labelling of food ingredient to indicate the presence of engineered nanomaterials there is now a need for standardised and validated methods to appropriately size and quantify (nano)particles in food matrices. A single-particle inductively coupled plasma mass spectrometry (spICP-MS) screening method for the determination of the size distribution and concentration of titanium dioxide particles in sugar-coated confectionery and pristine food-grade titanium dioxide was developed. Special emphasis was placed on the sample preparation procedure, crucial to reproducibly disperse the particles before analysis. The transferability of this method was tested in an interlaboratory comparison study among seven experienced European food control and food research laboratories equipped with various ICP-MS instruments and using different software packages. The assessed measurands included the particle mean diameter, the most frequent diameter, the percentage of particles (in number) with a diameter below 100 nm, the particles' number concentration and a number of cumulative particle size distribution parameters (D0, D10, D50, D99.5, D99.8 and D100). The evaluated method's performance characteristics were, the within-laboratory precision, expressed as the relative repeatability standard deviation (RSDr), and the between-laboratory precision, expressed as the relative reproducibility standard deviation (RSDR). Transmission electron microscopy (TEM) was used as a confirmatory technique and served as the basis for bias estimation. The optimisation of the sample preparation step showed that when this protocol was applied to the relatively simple sample food matrices used in this study, bath sonication turned out to be sufficient to reach the highest, achievable degree of dispersed constituent particles. For the pristine material, probe sonication was required. Repeatability and reproducibility were below 10% and 25% respectively for most measurands except for the lower (D0) and the upper (D100) bound of the particle size distribution and the particle number concentration. The broader distribution of the lower and the upper bounds could be attributed to instrument-specific settings/setups (e.g. the timing parameters, the transport efficiency, type of mass-spectrometer) and software-specific data treatment algorithms. Differences in the upper bound were identified as being due to the non-harmonised application of the upper counting limit. Reporting D99.5 or D99.8 instead of the effectively largest particle diameter (D100) excluded isolated large particles and considerably improved the reproducibility. The particle number-concentration was found to be influenced by small differences in the sample preparation procedure. The comparison of these results with those obtained using electron microscopy showed that the mean and median particle diameter was, in all cases, higher when using spICP-MS. The main reason for this was the higher size detection limit for spICP-MS plus the fact that some of the analysed particles remained agglomerated/aggregated after sonication. Single particle ICP-MS is a powerful screening technique, which in many cases provides sufficient evidence to confirm the need to label a food product as containing (engineered) titanium dioxide nanomaterial according to the current EU regulatory requirements. The overall positive outcome of the method performance evaluation and the current lack of alternative standardised procedures, would indicate this method as being a promising candidate for a full validation study.

7.
J Extracell Vesicles ; 10(3): e12052, 2021 01.
Article in English | MEDLINE | ID: mdl-33473263

ABSTRACT

The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to perform a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key-challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50-300 nm with complementary techniques is thoroughly investigated in a step-by step approach of incremental complexity. The six applied techniques include multi-angle dynamic light scattering (MADLS), asymmetric flow field flow fractionation coupled with multi-angle light scattering (AF4-MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high-sensitivity nano flow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post-processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set-up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements.


Subject(s)
Extracellular Vesicles , Liposomes , Particle Size , Dynamic Light Scattering/methods , Extracellular Vesicles/chemistry , Flow Cytometry/methods , Fractionation, Field Flow/methods , Liposomes/chemistry , Nanomedicine/methods , Nanoparticles/chemistry , Polystyrenes/chemistry
8.
Inj Prev ; 27(2): 172-183, 2021 04.
Article in English | MEDLINE | ID: mdl-32371468

ABSTRACT

The availability of data on consumer products-related accidents and injuries is of interest to a wide range of stakeholders, such as consumer product safety and injury prevention policymakers, market surveillance authorities, consumer organisations, standardisation organisations, manufacturers and the public. While the amount of information available and potentially of use for product safety is considerable in some European Union (EU) countries, its usability at EU level is difficult due to high fragmentation of the data sources, the diversity of data collection methods and increasing data protection concerns. To satisfy the policy need for more timely information on consumer product-related incidents, apart from injury data that have been historically collected by the public health sector, a number of 'alternative' data sources were assessed as potential sources of interest. This study explores the opportunities for enhancing the availability of data of consumer product-related injuries, arising from selected existing and 'alternative' data sources, widely present in Europe, such as firefighters' and poison centres' records, mortality statistics, consumer complaints, insurance companies' registers, manufacturers' incident registers and online news sources. These data sources, coupled with the use of IT technologies, such as interlinking by remote data access, could fill in the existing information gap. Strengths and weaknesses of selected data sources, with a view to support a common data platform, are evaluated and presented. Conducting the study relied on the literature review, extensive use of the surveys, interviews, workshops with experts and online data-mining pilot study.


Subject(s)
Accidents , Public Health , Europe , European Union , Humans , Pilot Projects
9.
Int J Hyg Environ Health ; 227: 113515, 2020 06.
Article in English | MEDLINE | ID: mdl-32305857

ABSTRACT

BACKGROUND: The European Commission has developed and put in place the Information Platform for Chemical Monitoring Data (IPCHEM), to promote a more coherent approach to the generation, collection, storage and use of chemical monitoring data in relation to humans and the environment. OBJECTIVES: This paper describes the specific development of the IPCHEM thematic module "Products and Indoor Air Data" which aims to facilitate the retrieval of and access to existing and future chemical monitoring data sources stemming from e.g. national monitoring programs of EU Member States and EU funded projects. The current development focusses on harmonised data and metadata templates and code lists related to indoor air monitoring data. METHODS: The extension and revision of the IPCHEM metadata and data collection templates for indoor air monitoring data was based on harmonisation and standardisation efforts on the development of indoor air monitoring protocols and guidelines for monitoring indoor pollution attributed to chemical and biological stressors, which were undertaken by European Commission Services, EU funded projects and research networks and EU Members States. RESULTS: A list of ten candidate data collections for potential integration were identified and prioritised. A different level of relevance was attributed to the enhanced metadata and data elements (mandatory, recommended, optional) to allow for their flexible applicability by end users. These elements should be provided for reaching the required quality in the data documentation as well as for ensuring a correct data traceability and interpretation. CONCLUSIONS: The proposed enhanced metadata and data models of the IPCHEM thematic module "Products and Indoor Air Data" can be used by data providers when planning and setting up their future indoor air monitoring campaigns, or to further mapping and harmonising data elements of their existing data collections for further integration into IPCHEM. This will boost the effective implementation of a coordinated approach for collecting, accessing and sharing existing and future indoor air monitoring data in support of policy making.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Monitoring , Europe , Metadata , Models, Theoretical
10.
Article in English | MEDLINE | ID: mdl-31990642

ABSTRACT

Titanium dioxide is a white colourant authorised as food additive E171 in the EU and is applied in a range of food products. Currently the EU specifications for E171 do not refer to the characterisation of particle size distribution; however, this may be requested in the near future. Only a few studies have been published to date reporting data on the size distribution of food grade titanium dioxide. The aim of this study was to characterise the size distribution of titanium dioxide particles contained in eight confectionery products and the pristine titanium dioxide samples used in each of the products. This allowed the direct comparison of the particle size distribution in both the pristine and the extracted materials. By using various analytical techniques, such as transmission electron microscopy, single particle inductively coupled plasma mass spectrometry (sp-ICPMS) and centrifuge liquid sedimentation (CLS) for the characterisation and quantification of the titanium dioxide particle sizes, the impact of the instrumentation on the results was systematically studied. The volume-specific surface area (VSSA) and crystalline structure were also determined for all additives.


Subject(s)
Food Additives/chemistry , Nanoparticles/chemistry , Titanium/chemistry , Crystallization , Food Analysis/methods , Particle Size , Surface Properties
11.
Anal Bioanal Chem ; 411(22): 5817-5831, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31227846

ABSTRACT

Synthetic amorphous silica is widely used in food processing as a food additive (E551) due to its properties as a flavour carrier and anti-caking agent. The direct measurement of E551 suspended or embedded in complex matrices is difficult without prior removal of the matrix components. The isolation of nanoparticles from the matrix is hence the first step towards their comprehensive characterization. Due to its complexity, matrix removal is frequently not trivial and may cause modification of the number-size distribution of the silica particles. The isolation of engineered silica nanoparticles by removal of the matrix with microwave-assisted acidic digestion is demonstrated methodologically using both monodisperse (size standards) and polydisperse (E551) particles spiked into ultrapure water and tomato sauce. For the characterization of the isolated nanoparticles, asymmetric field flow fractionation (AF4) coupled to multi-angle laser light scattering (MALS) and inductively coupled plasma mass spectrometry (ICP-MS) were chosen. The combination of ICP-MS and ultracentrifugation allowed for the rapid and reliable measurement of the dissolved fraction of SiO2. The results show that microwave-assisted acidic digestion partially dissolves silica nanoparticles. Moreover, the digestion conditions, in particular the low pH value, lead to strong agglomeration of the particles. A complete deagglomeration is not achieved, even when exposing the suspension to elevated sonication doses. The consequence of these two findings is a size distribution of particles after acidic digestion that is different from the original distribution before digestion. This result may have an impact on the evaluation of whether the material is a nanomaterial according to the recommended definition of the European Commission. Graphical abstract.

12.
J Chromatogr A ; 1566: 13-22, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-29945788

ABSTRACT

Polycyclic Aromatic Hydrocarbons (PAHs) have been detected in rubber and plastic components of a number of consumer products such as toys, tools for domestic use, sports equipment, and footwear, with carbon black and extender oils having been identified as principal sources. In response to these findings, the European Union Regulation (EU) No. 1272/2013 was adopted in December 2013, amending entry 50 in Annex XVII to the Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) directive establishing a restriction on the content of eight individual carcinogenic PAHs in plastic and rubber parts of products supplied to the public. This work proposes a simple, relatively fast, and cost effective method for determining the concentrations of each of these eight carcinogenic PAHs for compliance testing. Existing methodologies were taken as a starting point, improving in particular the extraction and the clean-up procedures. Randall hot extraction and ultrasonic extraction were compared with regard to their extraction efficiency. Randall hot extraction proved to be more efficient (10-40%, depending on PAH). Sample extract clean-up performance was qualitatively assessed for silica-packed columns and molecularly imprinted polymers (MIPs) solid phase extraction (SPE) cartridges. The use of highly selective MIP-SPE cartridges removed most of the undesired contaminants, highlighting their superiority with regard to traditional, silica-based purification methodologies. The introduction of Randall-hot extraction for sample extraction and MIP-based solid phase extraction cartridges for selective clean-up represents a novel advance compared with previously reported methods in this field. In combination with gas chromatography-mass spectrometry (GC-MS) analyses in selected ion mode, the method was found to be excellent in terms of extraction efficiency, extract purity, and speed.


Subject(s)
Chemistry Techniques, Analytical/methods , Plastics/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Rubber/chemistry , Gas Chromatography-Mass Spectrometry , Reproducibility of Results , Solid Phase Extraction
13.
Talanta ; 175: 200-208, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28841979

ABSTRACT

Single particle-inductively coupled plasma mass spectrometry (SP-ICPMS) is a promising technique able to generate the number based-particle size distribution (PSD) of nanoparticles (NPs) in aqueous suspensions. However, SP-ICPMS analysis is not consolidated as routine-technique yet and is not typically applied to real test samples with unknown composition. This work presents a methodology to detect, quantify and characterise the number-based PSD of Ag-NPs in different environmental aqueous samples (drinking and lake waters), aqueous samples derived from migration tests and consumer products using SP-ICPMS. The procedure is built from a pragmatic view and involves the analysis of serial dilutions of the original sample until no variation in the measured size values is observed while keeping particle counts proportional to the dilution applied. After evaluation of the analytical figures of merit, the SP-ICPMS method exhibited excellent linearity (r2>0.999) in the range (1-25) × 104 particlesmL-1 for 30, 50 and 80nm nominal size Ag-NPs standards. The precision in terms of repeatability was studied according to the RSDs of the measured size and particle number concentration values and a t-test (p = 95%) at the two intermediate concentration levels was applied to determine the bias of SP-ICPMS size values compared to reference values. The method showed good repeatability and an overall acceptable bias in the studied concentration range. The experimental minimum detectable size for Ag-NPs ranged between 12 and 15nm. Additionally, results derived from direct SP-ICPMS analysis were compared to the results conducted for fractions collected by asymmetric flow-field flow fractionation and supernatant fractions after centrifugal filtration. The method has been successfully applied to determine the presence of Ag-NPs in: lake water; tap water; tap water filtered by a filter jar; seven different liquid silver-based consumer products; and migration solutions (pure water and sweat simulant) from plasters. Results obtained by SP-ICPMS were supported by transmission electron microscopy and energy dispersive spectroscopy characterisation, suggesting that the proposed methodology can be applied as a positive screening test in the simultaneous quantification and size characterisation of Ag-NPs in samples of environmental interest.

14.
Int J Pharm ; 523(1): 320-326, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28342788

ABSTRACT

Analytical ultracentrifugation (AUC) is a powerful tool for the study of particle size distributions and interactions with high accuracy and resolution. In this work, we show how the analysis of sedimentation velocity data from the AUC can be used to characterize nanocarrier drug delivery systems used in nanomedicine. Nanocarrier size distribution and the ratio of free versus nanoparticle-encapsulated drug in a commercially available liposomal doxorubicin formulation are determined using interference and absorbance based AUC measurements and compared with results generated with conventional techniques. Additionally, the potential of AUC in measuring particle density and the detection of nanocarrier sub-populations is discussed as well. The unique capability of AUC in providing reliable data for size and composition in a single measurement and without complex sample preparation makes this characterization technique a promising tool both in nanomedicine product development and quality control.


Subject(s)
Antibiotics, Antineoplastic/analysis , Doxorubicin/analogs & derivatives , Doxorubicin/analysis , Nanomedicine , Particle Size , Polyethylene Glycols/analysis , Ultracentrifugation
15.
Int J Hyg Environ Health ; 219(3): 268-77, 2016 May.
Article in English | MEDLINE | ID: mdl-26847410

ABSTRACT

E-liquids generally contain four main components: nicotine, flavours, water and carrier liquids. The carrier liquid dissolves flavours and nicotine and vaporises at a certain temperature on the atomizer of the e-cigarette. Propylene glycol and glycerol, the principal carriers used in e-liquids, undergo decomposition in contact with the atomizer heating-coil forming volatile carbonyls. Some of these, such as formaldehyde, acetaldehyde and acrolein, are of concern due to their adverse impact on human health when inhaled at sufficient concentrations. The aim of this study was to correlate the yield of volatile carbonyls emitted by e-cigarettes with the temperature of the heating coil. For this purpose, a popular commercial e-liquid was machine-vaped on a third generation e-cigarette which allowed the variation of the output wattage (5-25W) and therefore the heat generated on the atomizer heating-coil. The temperature of the heating-coil was determined by infrared thermography and the vapour generated at each temperature underwent subjective sensorial quality evaluation by an experienced vaper. A steep increase in the generated carbonyls was observed when applying a battery-output of at least 15W corresponding to 200-250°C on the heating coil. However, when considering concentrations in each inhaled puff, the short-term indoor air guideline value for formaldehyde was already exceeded at the lowest wattage of 5W, which is the wattage applied in most 2nd generation e-cigarettes. Concentrations of acetaldehyde in each puff were several times below the short-term irritation threshold value for humans. Acrolein was only detected from 20W upwards. The negative sensorial quality evaluation by the volunteering vaper of the vapour generated at 20W demonstrated the unlikelihood that such a wattage would be realistically set by a vaper. This study highlights the importance to develop standardised testing methods for the assessment of carbonyl-emissions and emissions of other potentially harmful compounds from e-cigarettes. The wide variety and variability of products available on the market make the development of such methods and the associated standardised testing conditions particularly demanding.


Subject(s)
Air Pollutants/analysis , Aldehydes/analysis , Electronic Nicotine Delivery Systems , Environmental Monitoring , Temperature , Tobacco Products , Volatilization
16.
J Chromatogr A ; 1432: 92-100, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26787162

ABSTRACT

Synthetic amorphous silica (SAS) has been used as food additive under the code E551 for decades and the agrifood sector is considered a main exposure vector for humans and environment. However, there is still a lack of detailed methodologies for the determination of SAS' particle size and concentration. This work presents the detection and characterization of NPs in eleven different food-grade SAS samples, following a reasoned and detailed sequential methodology. Dynamic Light Scattering (DLS), Multiangle Light Scattering (MALS), Asymmetric Flow-Field Flow Fractionation (AF4), Inductively Coupled Plasma Mass Spectrometry (ICPMS) and Transmission Electron Microscopy (TEM) were used. The suitability and limitations, information derived from each type of analytical technique and implications related to current EC Regulation 1169/2011 on the provision of food information to consumers are deeply discussed. In general the z-average, AF4 hydrodynamic diameters and root mean square (rms) radii measured were in good agreement. AF4-ICPMS coupling and pre channel calibration with silica NPs standards allowed the reliable detection of NPs below 100nm for ten of eleven samples (AF4 diameters between 20.6 and 39.8nm) and to quantify the mass concentration in seven different samples (at mgL(-1) concentration level). TEM characterisation included the determination of the minimum detectable size and subsequent measurement of the equivalent circle diameter (ECD) of primary particles and small aggregates, which were between 10.3 and 20.3nm. Because of the dynamic size application range is limited by the minimum detectable size, all the techniques in this work can be used only as positive tests.


Subject(s)
Silicon Dioxide/analysis , Food Additives/analysis , Fractionation, Field Flow , Microscopy, Electron, Transmission , Nanoparticles , Particle Size
17.
Anal Chem ; 87(5): 3039-47, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25627280

ABSTRACT

This work proposes the use of multimodal mixtures of monodispersed silica nanoparticles (SiO2-NPs) standards for the simultaneous determination of size and concentration of SiO2-NPs in aqueous suspensions by asymmetric flow field-flow fractionation (AF4) coupled to inductively coupled plasma mass spectrometry (ICPMS). For such a purpose, suspensions of SiO2-NPs standards of 20, 40, 60, 80, 100, and 150 nm were characterized by transmission electronic microscopy (TEM), centrifugal liquid sedimentation (CLS), dynamic light scattering (DLS) and by measuring the Z-potential of the particles as well as the exact concentration of NPs by offline ICPMS. An online AF4-ICPMS method which allowed the separation of all the different sized SiO2-NPs contained in the mixture of standards was developed and the analytical figures of merit were systematically evaluated. The method showed excellent linearity in the studied concentration range (0.1-25 mg L(-1)), limits of detection between 0.16 and 0.3 mg L(-1) for smaller and greater particles, respectively, besides a satisfactory accuracy. AF4 calibration with particles with identical nature to those to be analyzed, also permitted accurate size determination in a pragmatic way. Similarly, by using prechannel calibration with NPs for mass determination it was possible to overcome common quantification problems associated with losses of material during the separation and size-dependent effects. The proposed methodology was successfully applied to the characterization in terms of size and concentration of aqueous test samples containing SiO2-NPs with monomodal size distributions.

18.
Int J Hyg Environ Health ; 218(1): 169-80, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25455424

ABSTRACT

Electronic cigarettes have achieved growing popularity since their introduction onto the European market. They are promoted by manufacturers as healthier alternatives to tobacco cigarettes, however debate among scientists and public health experts about their possible impact on health and indoor air quality means further research into the product is required to ensure decisions of policymakers, health care providers and consumers are based on sound science. This study investigated and characterised the impact of 'vaping' (using electronic cigarettes) on indoor environments under controlled conditions using a 30m(3) emission chamber. The study determined the composition of e-cigarette mainstream vapour in terms of propylene glycol, glycerol, carbonyls and nicotine emissions using a smoking machine with adapted smoking parameters. Two different base recipes for refill liquids, with three different amounts of nicotine each, were tested using two models of e-cigarettes. Refill liquids were analysed on their content of propylene glycol, glycerol, nicotine and qualitatively on their principal flavourings. Possible health effects of e-cigarette use are not discussed in this work. Electronic cigarettes tested in this study proved to be sources for propylene glycol, glycerol, nicotine, carbonyls and aerosol particulates. The extent of exposure differs significantly for active and passive 'vapers' (users of electronic cigarettes). Extrapolating from the average amounts of propylene glycol and glycerol condensed on the smoking machine filter pad to the resulting lung-concentration, estimated lung concentrations of 160 and 220mgm(-3) for propylene glycol and glycerol were obtained, respectively. Vaping refill liquids with nicotine concentrations of 9mgmL(-1) led to vapour condensate nicotine amounts comparable to those of low-nicotine regular cigarettes (0.15-0.2mg). In chamber studies, peak concentrations of 2200µgm(-3) for propylene glycol, 136µgm(-3) for glycerol and 0.6µgm(-3) for nicotine were reached. Carbonyls were not detected above the detection limits in chamber studies. Particles in the size range of 20nm to 300nm constantly increased during vaping activity and reached final peak concentrations of 7×10(6)particlesL(-1). Moreover, the tested products showed design flaws such as leakages from the cartridge reservoirs. Possible long term effects of e-cigarettes on health are not yet known. E-cigarettes, the impact of vaping on health and the composition of refill liquids require therefore further research into the product characteristics. The consumers would benefit from harmonised quality and safety improvements of e-cigarettes and refill liquids.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Electronic Nicotine Delivery Systems/adverse effects , Environmental Monitoring , Glycerol/analysis , Humans , Nicotine/analysis , Propylene Glycol/analysis
19.
J Chromatogr A ; 1321: 100-8, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24238704

ABSTRACT

The powerful antibacterial properties of engineered silver nanoparticles (AgNPs) have, in recent years, led to a great increase in their use in consumer products such as textiles and personal care products offers. This widespread and often indiscriminate use of nano-silver is inevitably increasing the probability that such materials be accidentally or deliberately lost into the environment. Once present in the environment the normally useful antibacterial properties of the silver may instead become a potential hazard to both man and the environment. In the face of such concerns it therefore desirable to develop easy, reliable and sensitive analytical methods for the determination of nano-sized silver in various matrices. This paper describes a method for the simultaneous determination of particles-size and mass-concentration of citrate-stabilized silver nano-particles in aqueous matrices by asymmetric flow field flow fractionation coupled to an ICP-mass spectrometer and UV/vis detector. In particular, this work has evaluated the use of pre-channel injections of mono-dispersed silver nano-particles as a means of accurate size and mass-calibration. The suitability of the method as a means to generate accurate and reliable results was verified by determination of parameters such as precision under repeatability conditions, linearity, accuracy, recovery and analytical sensitivity.


Subject(s)
Fractionation, Field Flow , Mass Spectrometry/instrumentation , Metal Nanoparticles , Silver/chemistry , Spectrophotometry, Ultraviolet/methods , Water/chemistry , Calibration , Limit of Detection , Mass Spectrometry/methods , Molecular Weight , Particle Size , Reproducibility of Results
20.
Environ Int ; 35(8): 1188-95, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19729200

ABSTRACT

The presence of selected volatile organic compounds (VOCs) including aromatic, aliphatic compounds and low molecular weight carbonyls, and a target set of phthalates were investigated in the interior of 23 used private cars during the summer and winter. VOC concentrations often exceeded levels typically found in residential indoor air, e.g. benzene concentrations reached values of up to 149.1 microg m(-3). Overall concentrations were 40% higher in summer, with temperatures inside the cars reaching up to 70 degrees C. The most frequently detected phthalates were di-n-butyl-phthalate and bis-(2-ethylhexyl) phthalate in concentrations ranging from 196 to 3656 ng m(-3).


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Automobiles/statistics & numerical data , Phthalic Acids/analysis , Volatile Organic Compounds/analysis , Benzene/analysis , Dibutyl Phthalate/analysis , Environmental Monitoring , Plasticizers/analysis , Seasons , Temperature , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...