Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 93(8): 083514, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36050046

ABSTRACT

We have developed a non-collective Thomson scattering diagnostic for measurements of electron density and temperature on the Large Plasma Device. A triple grating spectrometer with a tunable notch filter is used to discriminate the faint scattering signal from the stray light. In this paper, we describe the diagnostic and its calibration via Raman scattering and present the first measurements performed with the fully commissioned system. Depending on the discharge conditions, the measured densities and temperatures range from 4.0 × 1012 to 2.8 × 1013 cm-3 and from 1.2 to 6.8 eV, respectively. The variation of the measurement error with plasma parameters and discharges averaged is also discussed.

2.
Rev Sci Instrum ; 90(8): 083505, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31472640

ABSTRACT

Whistler and Alfvén waves are known to scatter mirror-trapped electrons and protons into the loss cone of the earth's dipole magnetic field. An array of satellites with properly phased antennas can be used to artificially reduce the flux of energetic particles from regions where their flux has been naturally or artificially pumped. In any space based system, the power required to drive antennas is at a premium. We present here experimental evidence that the efficiency of an antenna can be greatly enhanced with the use of ferrite cores with high relative magnetic permeability µ. Ferrite-based antennas were constructed to launch Alfvén waves in a magnetized plasma. The wave magnetic field of shear Alfvén waves launched with a ferrite core was by the magnetization factor µ larger than that of a similar antenna without a ferrite. Combining multiple ferrite antennas allowed control of the injected perpendicular wavelength. This novel technique can be used to efficiently launch low frequency waves with amplitude above the threshold required for nonlinear triggering.

3.
Proc Natl Acad Sci U S A ; 116(37): 18239-18244, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-29925603

ABSTRACT

Magnetic flux ropes are structures that are common in the corona of the sun and presumably all stars. They can be thought of as the building blocks of solar structures. They have been observed in Earth's magnetotail and near Mars and Venus. When multiple flux ropes are present magnetic field line reconnection, which converts magnetic energy to other forms, can occur when they collide. The structure of multiple magnetic ropes, the interactions between multiple ropes, and their topological properties such as helicity and writhing have been studied theoretically and in laboratory experiments. Here, we report on spiky potential and magnetic fields associated with the ropes. We show that the potential structures are chaotic for a range of their temporal half-widths and the probability density function (PDF) of their widths resembles the statistical distribution of crumpled paper. The spatial structure of the magnetic spikes is revealed using a correlation counting method. Computer simulation suggests that the potential structures are the nonlinear end result of an instability involving relative drift between ions and electrons.

4.
Phys Rev Lett ; 119(20): 205002, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29219335

ABSTRACT

An experiment in a linear device, the Large Plasma Device, is used to study sheaths caused by an actively powered radio frequency (rf) antenna. The rf antenna used in the experiment consists of a single current strap recessed inside a copper box enclosure without a Faraday screen. A large increase in the plasma potential was observed along magnetic field lines that connect to the antenna limiter. The electric field from the spatial variation of the rectified plasma potential generated E[over →]×B[over →]_{0} flows, often referred to as convective cells. The presence of the flows generated by these potentials is confirmed by Mach probes. The observed convective cell flows are seen to cause the plasma in front of the antenna to flow away and cause a density modification near the antenna edge. These can cause hot spots and damage to the antenna and can result in a decrease in the ion cyclotron range of frequencies antenna coupling.

5.
Phys Rev Lett ; 117(5): 059901, 2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27517795

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.114.245002.

6.
Phys Rev Lett ; 116(23): 235101, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27341240

ABSTRACT

The dynamics of magnetic reconnection is investigated in a laboratory experiment consisting of two magnetic flux ropes, with currents slightly above the threshold for the kink instability. The evolution features periodic bursts of magnetic reconnection. To diagnose this complex evolution, volumetric three-dimensional data were acquired for both the magnetic and electric fields, allowing key field-line mapping quantities to be directly evaluated for the first time with experimental data. The ropes interact by rotating about each other and periodically bouncing at the kink frequency. During each reconnection event, the formation of a quasiseparatrix layer (QSL) is observed in the magnetic field between the flux ropes. Furthermore, a clear correlation is demonstrated between the quasiseparatrix layer and enhanced values of the quasipotential computed by integrating the parallel electric field along magnetic field lines. These results provide clear evidence that field lines passing through the quasiseparatrix layer are undergoing reconnection and give a direct measure of the nonlinear reconnection rate. The measurements suggest that the parallel electric field within the QSL is supported predominantly by electron pressure; however, resistivity may play a role.

7.
Rev Sci Instrum ; 87(2): 023509, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26931851

ABSTRACT

A novel solid-state modulator capable of generating rapid consecutive power pulses is constructed to facilitate experiments on plasma interaction with high power microwave pulses. The modulator is designed to output a 100 kHz tone burst, which consists of up to 10 pulses, each with 1 µs duration and 1 MW peak power. The pulses are formed by discharging a total of 480 µF capacitors through 24 synchronized MOSFETs and 6 step-up transformers. The highly modular design, as a replacement of an old single-pulse version used in earlier experiments which employs a pulse forming network, brings great flexibility and wide potential to its application. A systematic cost-effectiveness analysis is also presented.

8.
Rev Sci Instrum ; 87(2): 025105, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26931889

ABSTRACT

In 1991 a manuscript describing an instrument for studying magnetized plasmas was published in this journal. The Large Plasma Device (LAPD) was upgraded in 2001 and has become a national user facility for the study of basic plasma physics. The upgrade as well as diagnostics introduced since then has significantly changed the capabilities of the device. All references to the machine still quote the original RSI paper, which at this time is not appropriate. In this work, the properties of the updated LAPD are presented. The strategy of the machine construction, the available diagnostics, the parameters available for experiments, as well as illustrations of several experiments are presented here.

9.
Phys Rev Lett ; 114(24): 245002, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-26196981

ABSTRACT

Whistler mode chorus emissions with a characteristic frequency chirp are important magnetospheric waves, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a beam of energetic electrons launched into a cold plasma. Frequency chirps are only observed for a narrow range of plasma and beam parameters, and show a strong dependence on beam density, plasma density, and magnetic field gradient. Broadband whistler waves similar to magnetospheric hiss are also observed, and the parameter ranges for each emission are quantified.

10.
Rev Sci Instrum ; 86(5): 053507, 2015 May.
Article in English | MEDLINE | ID: mdl-26026525

ABSTRACT

The plasma potential, V(p), is a key quantity in experimental plasma physics. Its spatial gradients directly yield the electrostatic field present. Emissive probes operating under space-charge limited emission conditions float close to V(p) even under time-varying conditions. Throughout their long history in plasma physics, they have mostly been constructed with resistively heated tungsten wire filaments. In high density plasmas (>10(12) cm(-3)), hexaboride emitters are required because tungsten filaments cannot be heated to sufficient emission without component failure. A resistively heated emissive probe with a cerium hexaboride, CeB6, emitter has been developed to work in plasma densities up to 10(13) cm(-3). To show functionality, three spatial profiles of V(p) are compared using the emissive probe, a cold floating probe, and a swept probe inside a plasma containing regions with and without current. The swept probe and emissive probe agree well across the profile while the floating cold probe fails in the current carrying region.

11.
Article in English | MEDLINE | ID: mdl-25679725

ABSTRACT

Generation of shear Alfvén waves by the Doppler-shifted ion-cyclotron-resonance (DICR) of a spiraling H(+) ion beam with magnetic fluctuations in a dual-species magnetized plasma with He(+) and H(+) ions has been investigated on the Large Plasma Device. The ambient plasma density and electron temperature were significantly enhanced by the beam. The Alfvén waves were left-handed polarized and traveled in the direction opposite to the ion beam. This is the first experimental demonstration of the DICR excitation of traveling shear Alfvén waves in a laboratory magnetoplasma.

12.
Phys Rev Lett ; 112(14): 145006, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24765981

ABSTRACT

Resonant interactions between energetic electrons and whistler mode waves are an essential ingredient in the space environment, and in particular in controlling the dynamic variability of Earth's natural radiation belts, which is a topic of extreme interest at the moment. Although the theory describing resonant wave-particle interaction has been present for several decades, it has not been hitherto tested in a controlled laboratory setting. In the present Letter we report on the first laboratory experiment to directly detect resonant pitch angle scattering of energetic (∼keV) electrons due to whistler mode waves. We show that the whistler mode wave deflects energetic electrons at precisely the predicted resonant energy, and that varying both the maximum beam energy, and the wave frequency, alters the energetic electron beam very close to the resonant energy.

13.
Phys Rev Lett ; 110(26): 265001, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23848883

ABSTRACT

Experiments are performed at the Enormous Toroidal Plasma Device at UCLA to study the neutral boundary layer (NBL) between a magnetized plasma and a neutral gas along the direction of a confining magnetic field. This is the first experiment to measure plasma termination within a neutral gas without the presence of a wall or obstacle. A magnetized, current-free helium plasma created by a lanthanum hexaboride (LaB6) cathode terminates entirely within a neutral helium gas. The plasma is weakly ionized (ne/nn∼1%) and collisional λn≪Lplasma}. The NBL occurs where the plasma pressure equilibrates with the neutral gas pressure, consistent with a pressure balance model. It is characterized by a field-aligned ambipolar electric field, developing self-consistently to maintain a current-free termination of the plasma on the neutral gas. Probes are inserted into the plasma to measure the plasma density, flow, temperature, current, and potential. These measurements confirm the presence of the ambipolar field and the pressure equilibration model of the NBL.

14.
Rev Sci Instrum ; 84(5): 053503, 2013 May.
Article in English | MEDLINE | ID: mdl-23742547

ABSTRACT

A tomography system was designed and built at the Large Plasma Device to measure the spatial distribution of hard x-ray (100 KeV-3 MeV) emissivity. The x-rays were generated when a hot electron ring was significantly disrupted by a shear Alfvén wave. The plasma is pulsed at 1 Hz (1 shot/s). A lead shielded scintillator detector with an acceptance angle defined by a lead pinhole is mounted on a rotary gimbal and used to detect the x-rays. The system measures one chord per plasma shot using only one detector. A data plane usually consists of several hundred chords. A novel Dot by Dot Reconstruction (DDR) method is introduced to calculate the emissivity profile from the line integrated data. In the experiments, there are often physical obstructions, which make measurements at certain angles impossible. The DDR method works well even in this situation. The method was tested with simulated data, and was found to be more effective than previously published methods for the specific geometry of this experiment. The reconstructed x-ray emissivity from experimental data by this method is shown.

15.
Rev Sci Instrum ; 82(9): 093501, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21974581

ABSTRACT

A helium ion beam source (23 kV/2.0 A) has been constructed for studying fast-ion physics in the cylindrical magnetized plasma of the large plasma device (LAPD). An inductive RF source produces a 10(19) m(-3) density plasma in a ceramic dome. A multi-aperture, rectangular (8 cm × 8 cm) three-grid system extracts the ion beam from the RF plasma. The ion beam is injected at a variety of pitch angles with Alfvénic speeds in the LAPD. The beam current is intense enough to excite magnetic perturbations in the ambient plasma. Measurements of the ion beam profile were made to achieve an optimum beam performance and a reliable source operation was demonstrated on the LAPD.


Subject(s)
Plasma Gases , Radiation Equipment and Supplies , Radio Waves , Equipment Design , Equipment Safety , Ions
16.
Rev Sci Instrum ; 81(8): 083503, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20815604

ABSTRACT

A new 18x18 cm(2) active area lanthanum hexaboride (LaB(6)) plasma source for use in a dc discharge has been developed at UCLA. The cathode consists of four tiled LaB(6) pieces indirectly heated to electron emission (1750 degrees C) by a graphite heater. A molybdenum mesh anode 33 cm in front of the LaB(6) accelerates the electrons, ionizing a fill gas to create a 20x20 cm(2) nearly square plasma. The source is run in pulsed operation with the anode biased up to +400 V dc with respect to the cathode for up to 100 ms at a 1 Hz repetition rate. Both the cathode and anode "float" electrically with respect to the chamber walls. The source is placed in a toroidal chamber 2 m wide and 3 m tall with a major radius of 5 m. Toroidal and vertical magnetic fields confine the current-free plasma which follows the field in a helix. The plasma starts on the bottom of the machine and spirals around it up to four times (120 m) and can be configured to terminate either on the top wall or on the neutral gas itself. The source typically operates with a discharge current up to 250 A in helium making plasmas with T(e)<30 eV, T(i)<16 eV, and n(e)<3x10(13) cm(-3) in a background field of 100 G

17.
Phys Rev Lett ; 105(7): 075005, 2010 Aug 13.
Article in English | MEDLINE | ID: mdl-20868055

ABSTRACT

Dramatic eruption of an arched magnetic flux rope in a large ambient plasma has been studied in a laboratory experiment that simulates coronal loops. The eruption is initiated by laser generated plasma flows from the footpoints of the rope that significantly modify the magnetic-field topology and link the magnetic-field lines of the rope with the ambient plasma. Following this event, the flux rope erupts by releasing its plasma into the background. The resulting impulse excites intense magnetosonic waves that transfer energy to the ambient plasma and subsequently decay.

18.
Phys Rev Lett ; 105(19): 195003, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-21231174

ABSTRACT

We describe the first-ever volumetric, time-resolved measurements performed with a moving probe within an expanding dense plasma, embedded in a background magnetized plasma. High-resolution probe measurements of the magnetic field and floating potential in multiple 2D cut planes combined with a 1 Hz laser system reveal complex three-dimensional current systems within the expanding plasma. Static (ωreal=0) flutelike density striations are observed at the leading edge of the plasma, which are correlated to variations in the current layer at the edge of the expanding plasma.

19.
Phys Rev Lett ; 103(4): 045003, 2009 Jul 24.
Article in English | MEDLINE | ID: mdl-19659363

ABSTRACT

Capacitively coupled plasma glow discharges have been extensively used for materials processing in numerous industrial applications. Considerable research has been performed on plasma sheaths and standing waves over a capacitive applicator, which typically holds the processed substrate (e.g., a semiconductor wafer). In this work, we demonstrate for the first time the existence of normal modes in electric potential analogous to the vibrational modes in circular membranes and plates. These modes are exhibited through cross spectral analysis of the plasma potential measured with an emissive probe at 208 spatial positions and sampled at 1 GHz. These modes exist at several frequencies and are described by a series of Bessel functions. The data further suggests a nonlinear interaction between modes of different frequencies.

20.
Rev Sci Instrum ; 79(8): 083505, 2008 Aug.
Article in English | MEDLINE | ID: mdl-19044347

ABSTRACT

Laboratory measurement of small-scale ( approximately 1 mm) magnetic phenomena over an extended area is a challenge requiring precise diagnostics. We present a novel two dimensional magnetic probe platform capable of directly measuring the magnetic field over a 36 cm(2) region at spatial resolutions better than 1 mm. The platform is discussed in the context of an experiment at the Large Plasma Device facility at UCLA, designed to measure the magnetic interaction between two counterpropagating laser-produced plasmas. The use of a precise, repeatable positioning platform enables the recovery of information about the interaction using cross-correlation techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...