Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
1.
Sci Rep ; 14(1): 7852, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570624

ABSTRACT

CsqR (YihW) is a local transcription factor that controls expression of yih genes involved in degradation of sulfoquinovose in Escherichia coli. We recently showed that expression of the respective gene cassette might be regulated by lactose. Here, we explore the phylogenetic and functional traits of CsqR. Phylogenetic analysis revealed that CsqR had a conserved Met25. Western blot demonstrated that CsqR was synthesized in the bacterial cell as two protein forms, 28.5 (CsqR-l) and 26 kDa (CsqR-s), the latter corresponding to start of translation at Met25. CsqR-s was dramatically activated during growth with sulfoquinovose as a sole carbon source, and displaced CsqR-l in the stationary phase during growth on rich medium. Molecular dynamic simulations revealed two possible states of the CsqR-s structure, with the interdomain linker being represented by either a disordered loop or an ɑ-helix. This helix allowed the hinge-like motion of the N-terminal domain resulting in a switch of CsqR-s between two conformational states, "open" and "compact". We then modeled the interaction of both CsqR forms with putative effectors sulfoquinovose, sulforhamnose, sulfoquinovosyl glycerol, and lactose, and revealed that they all preferred the same pocket in CsqR-l, while in CsqR-s there were two possible options dependent on the linker structure.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Phylogeny , Lactose/metabolism , Escherichia coli Proteins/metabolism
2.
Genome Biol Evol ; 16(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38401265

ABSTRACT

While mutational processes operating in the Escherichia coli genome have been revealed by multiple laboratory experiments, the contribution of these processes to accumulation of bacterial polymorphism and evolution in natural environments is unknown. To address this question, we reconstruct signatures of distinct mutational processes from experimental data on E. coli hypermutators, and ask how these processes contribute to differences between naturally occurring E. coli strains. We show that both mutations accumulated in the course of evolution of wild-type strains in nature and in the lab-grown nonmutator laboratory strains are explained predominantly by the low fidelity of DNA polymerases II and III. By contrast, contributions specific to disruption of DNA repair systems cannot be detected, suggesting that temporary accelerations of mutagenesis associated with such disruptions are unimportant for within-species evolution. These observations demonstrate that accumulation of diversity in bacterial strains in nature is predominantly associated with errors of DNA polymerases.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Mutation , DNA-Directed DNA Polymerase/genetics , Mutagenesis , Bacteria/genetics , DNA, Bacterial/genetics
3.
PeerJ ; 11: e15838, 2023.
Article in English | MEDLINE | ID: mdl-37701837

ABSTRACT

Enterotypes of the human gut microbiome have been proposed to be a powerful prognostic tool to evaluate the correlation between lifestyle, nutrition, and disease. However, the number of enterotypes suggested in the literature ranged from two to four. The growth of available metagenome data and the use of exact, non-linear methods of data analysis challenges the very concept of clusters in the multidimensional space of bacterial microbiomes. Using several published human gut microbiome datasets of variable 16S rRNA regions, we demonstrate the presence of a lower-dimensional structure in the microbiome space, with high-dimensional data concentrated near a low-dimensional non-linear submanifold, but the absence of distinct and stable clusters that could represent enterotypes. This observation is robust with regard to diverse combinations of dimensionality reduction techniques and clustering algorithms.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Metagenome , Algorithms
4.
Proc Natl Acad Sci U S A ; 120(22): e2221683120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216548

ABSTRACT

The triplet nature of the genetic code is considered a universal feature of known organisms. However, frequent stop codons at internal mRNA positions in Euplotes ciliates ultimately specify ribosomal frameshifting by one or two nucleotides depending on the context, thus posing a nontriplet feature of the genetic code of these organisms. Here, we sequenced transcriptomes of eight Euplotes species and assessed evolutionary patterns arising at frameshift sites. We show that frameshift sites are currently accumulating more rapidly by genetic drift than they are removed by weak selection. The time needed to reach the mutational equilibrium is several times longer than the age of Euplotes and is expected to occur after a several-fold increase in the frequency of frameshift sites. This suggests that Euplotes are at an early stage of the spread of frameshifting in expression of their genome. In addition, we find the net fitness burden of frameshift sites to be noncritical for the survival of Euplotes. Our results suggest that fundamental genome-wide changes such as a violation of the triplet character of genetic code can be introduced and maintained solely by neutral evolution.


Subject(s)
Ciliophora , Euplotes , Euplotes/genetics , Euplotes/metabolism , Genetic Code , Base Sequence , Codon, Terminator/genetics , Codon, Terminator/metabolism , Ciliophora/genetics , Genetic Drift
5.
Front Mol Biosci ; 10: 1121376, 2023.
Article in English | MEDLINE | ID: mdl-36936992

ABSTRACT

Small non-coding and antisense RNAs are widespread in all kingdoms of life, however, the diversity of their functions in bacteria is largely unknown. Here, we study RNAs synthesised from divergent promoters located in the 3'-end of the uxuR gene, encoding transcription factor regulating hexuronate metabolism in Escherichia coli. These overlapping promoters were predicted in silico with rather high scores, effectively bound RNA polymerase in vitro and in vivo and were capable of initiating transcription in sense and antisense directions. The genome-wide correlation between in silico promoter scores and RNA polymerase binding in vitro and in vivo was higher for promoters located on the antisense strands of the genes, however, sense promoters within the uxuR gene were more active. Both regulatory RNAs synthesised from the divergent promoters inhibited expression of genes associated with the E. coli motility and chemotaxis independent of a carbon source on which bacteria had been grown. Direct effects of these RNAs were confirmed for the fliA gene encoding σ28 subunit of RNA polymerase. In addition to intracellular sRNAs, promoters located within the uxuR gene could initiate synthesis of transcripts found in the fraction of RNAs secreted in the extracellular medium. Their profile was also carbon-independent suggesting that intragenic uxuR transcripts have a specific regulatory role not directly related to the function of the protein in which gene they are encoded.

6.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36759336

ABSTRACT

The chromatin interaction assays, particularly Hi-C, enable detailed studies of genome architecture in multiple organisms and model systems, resulting in a deeper understanding of gene expression regulation mechanisms mediated by epigenetics. However, the analysis and interpretation of Hi-C data remain challenging due to technical biases, limiting direct comparisons of datasets obtained in different experiments and laboratories. As a result, removing biases from Hi-C-generated chromatin contact matrices is a critical data analysis step. Our novel approach, HiConfidence, eliminates biases from the Hi-C data by weighing chromatin contacts according to their consistency between replicates so that low-quality replicates do not substantially influence the result. The algorithm is effective for the analysis of global changes in chromatin structures such as compartments and topologically associating domains. We apply the HiConfidence approach to several Hi-C datasets with significant technical biases, that could not be analyzed effectively using existing methods, and obtain meaningful biological conclusions. In particular, HiConfidence aids in the study of how changes in histone acetylation pattern affect chromatin organization in Drosophila melanogaster S2 cells. The method is freely available at GitHub: https://github.com/victorykobets/HiConfidence.


Subject(s)
Drosophila melanogaster , Genome , Animals , Drosophila melanogaster/genetics , Chromatin/genetics , Chromosomes , Bias
7.
Data Brief ; 46: 108860, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36632439

ABSTRACT

The soil response to a jet-fuel contamination is uncertain. In this article, original data on the influence of a jet-fuel spillage on the topsoil properties are presented. The data set is obtained during a one-year long pot and field experiments with Dystric Arenosols, Fibric Histosols and Albic Luvisols. Kerosene loads were 1, 5, 10, 25 and 100 g/kg. The data set includes information about temporal changes in kerosene concentration; physicochemical properties, such as рН, moisture, cation exchange capacity, content of soil organic matter, available P and K, exchangeable NH4 +, and water-soluble NO3 -; and biological properties, such as biological consumption of oxygen, and cellulolytic activity. Also, we provide sequencing data on variable regions of 16S ribosomal RNA of microbial communities from the respective soil samples.

8.
PeerJ ; 10: e14335, 2022.
Article in English | MEDLINE | ID: mdl-36530406

ABSTRACT

Deep learning is a class of machine learning techniques capable of creating internal representation of data without explicit preprogramming. Hence, in addition to practical applications, it is of interest to analyze what features of biological data may be learned by such models. Here, we describe PredPair, a deep learning neural network trained to predict base pairs in RNA structure from sequence alone, without any incorporated prior knowledge, such as the stacking energies or possible spatial structures. PredPair learned the Watson-Crick and wobble base-pairing rules and created an internal representation of the stacking energies and helices. Application to independent experimental (DMS-Seq) data on nucleotide accessibility in mRNA showed that the nucleotides predicted as paired indeed tend to be involved in the RNA structure. The performance of the constructed model was comparable with the state-of-the-art method based on the thermodynamic approach, but with a higher false positives rate. On the other hand, it successfully predicted pseudoknots. t-SNE clusters of embeddings of RNA sequences created by PredPair tend to contain embeddings from particular Rfam families, supporting the predictions of PredPair being in line with biological classification.


Subject(s)
Neural Networks, Computer , RNA , Humans , RNA/genetics , Base Pairing , Nucleotides , Machine Learning
9.
Sci Rep ; 12(1): 17570, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266393

ABSTRACT

Holometabolous insects are predominantly motionless during metamorphosis, when no active feeding is observed and the body is enclosed in a hardened cuticle. These physiological properties as well as undergoing processes resemble embryogenesis, since at the pupal stage organs and systems of the imago are formed. Therefore, recapitulation of the embryonic expression program during metamorphosis could be hypothesized. To assess this hypothesis at the transcriptome level, we have performed a comprehensive analysis of the developmental datasets available in the public domain. Indeed, for most datasets, the pupal gene expression resembles the embryonic rather than the larval pattern, interrupting gradual changes in the transcriptome. Moreover, changes in the transcriptome profile during the pupa-to-imago transition are positively correlated with those at the embryo-to-larvae transition, suggesting that similar expression programs are activated. Gene sets that change their expression level during the larval stage and revert it to the embryonic-like state during the metamorphosis are enriched with genes associated with metabolism and development.


Subject(s)
Gene Expression Regulation, Developmental , Metamorphosis, Biological , Animals , Pupa , Metamorphosis, Biological/genetics , Larva , Insecta/genetics , Insecta/metabolism , Insect Proteins/genetics
10.
Int J Mol Sci ; 23(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36142884

ABSTRACT

Dosage compensation equalizes gene expression in a single male X chromosome with that in the pairs of autosomes and female X chromosomes. In the fruit fly Drosophila, canonical dosage compensation is implemented by the male-specific lethal (MSL) complex functioning in all male somatic cells. This complex contains acetyl transferase males absent on the first (MOF), which performs H4K16 hyperacetylation specifically in the male X chromosome, thus facilitating transcription of the X-linked genes. However, accumulating evidence points to an existence of additional, non-canonical dosage compensation mechanisms operating in somatic and germline cells. In this review, we discuss current advances in the understanding of both canonical and non-canonical mechanisms of dosage compensation in Drosophila.


Subject(s)
Drosophila Proteins , Drosophila , Acetyltransferases/genetics , Animals , Dosage Compensation, Genetic , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Male , Nuclear Proteins/genetics , X Chromosome/genetics
11.
BMC Genomics ; 23(Suppl 6): 558, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36008760

ABSTRACT

BACKGROUND: The histidine metabolism and transport (his) genes are controlled by a variety of RNA-dependent regulatory systems among diverse taxonomic groups of bacteria including T-box riboswitches in Firmicutes and Actinobacteria and RNA attenuators in Proteobacteria. Using a comparative genomic approach, we previously identified a novel DNA-binding transcription factor (named HisR) that controls the histidine metabolism genes in diverse Gram-positive bacteria from the Firmicutes phylum. RESULTS: Here we report the identification of HisR-binding sites within the regulatory regions of the histidine metabolism and transport genes in 395 genomes representing the Bacilli, Clostridia, Negativicutes, and Tissierellia classes of Firmicutes, as well as in 97 other HisR-encoding genomes from the Actinobacteria, Proteobacteria, and Synergistetes phyla. HisR belongs to the TrpR family of transcription factors, and their predicted DNA binding motifs have a similar 20-bp palindromic structure but distinct lineage-specific consensus sequences. The predicted HisR-binding motif was validated in vitro using DNA binding assays with purified protein from the human gut bacterium Ruminococcus gnavus. To fill a knowledge gap in the regulation of histidine metabolism genes in Firmicutes genomes that lack a hisR repressor gene, we systematically searched their upstream regions for potential RNA regulatory elements. As result, we identified 158 T-box riboswitches preceding the histidine biosynthesis and/or transport genes in 129 Firmicutes genomes. Finally, novel candidate RNA attenuators were identified upstream of the histidine biosynthesis operons in six species from the Bacillus cereus group, as well as in five Eubacteriales and six Erysipelotrichales species. CONCLUSIONS: The obtained distribution of the HisR transcription factor and two RNA-mediated regulatory mechanisms for histidine metabolism genes across over 600 species of Firmicutes is discussed from functional and evolutionary points of view.


Subject(s)
Actinobacteria , Riboswitch , Actinobacteria/genetics , Bacteria/genetics , DNA/metabolism , Gene Expression Regulation, Bacterial , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/metabolism , Histidine/genetics , Histidine/metabolism , Humans , Phylogeny , Riboswitch/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Int J Mol Sci ; 23(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35955512

ABSTRACT

ExuR and UxuR are paralogous proteins belonging to the GntR family of transcriptional regulators. Both are known to control hexuronic acid metabolism in a variety of Gammaproteobacteria but the relative impact of each of them is still unclear. Here, we apply 2D difference electrophoresis followed by mass-spectrometry to characterise the changes in the Escherichia coli proteome in response to a uxuR or exuR deletion. Our data clearly show that the effects are different: deletion of uxuR resulted in strongly enhanced expression of D-mannonate dehydratase UxuA and flagellar protein FliC, and in a reduced amount of outer membrane porin OmpF, while the absence of ExuR did not significantly alter the spectrum of detected proteins. Consequently, the physiological roles of proteins predicted as homologs seem to be far from identical. Effects of uxuR deletion were largely dependent on the cultivation conditions: during growth with glucose, UxuA and FliC were dramatically altered, while during growth with glucuronate, activation of both was not so prominent. During the growth with glucose, maximal activation was detected for FliC. This was further confirmed by expression analysis and physiological tests, thus suggesting the involvement of UxuR in the regulation of bacterial motility and biofilm formation.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Glucose/metabolism , Hexuronic Acids/metabolism , Proteome/metabolism , Transcription Factors/metabolism
13.
iScience ; 25(7): 104535, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35754742

ABSTRACT

While somatic mutations are known to be enriched in genome regions with non-canonical DNA secondary structure, the impact of particular mutagens still needs to be elucidated. Here, we demonstrate that in human cancers, the APOBEC mutagenesis is not enriched in direct repeats, mirror repeats, short tandem repeats, and G-quadruplexes, and even decreased below its level in B-DNA for cancer samples with very high APOBEC activity. In contrast, we observe that the APOBEC-induced mutational density is positively associated with APOBEC activity in inverted repeats (cruciform structures), where the impact of cytosine at the 3'-end of the hairpin loop is substantial. Surprisingly, the APOBEC-signature mutation density per TC motif in the single-stranded DNA of a G-quadruplex (G4) is lower than in the four-stranded part of G4 and in B-DNA. The APOBEC mutagenesis, as well as the UV-mutagenesis in melanoma samples, are absent in Z-DNA regions, owing to the depletion of their mutational signature motifs.

14.
Sci Rep ; 12(1): 6868, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35477739

ABSTRACT

Until recently, Shigella and enteroinvasive Escherichia coli were thought to be primate-restricted pathogens. The base of their pathogenicity is the type 3 secretion system (T3SS) encoded by the pINV virulence plasmid, which facilitates host cell invasion and subsequent proliferation. A large family of T3SS effectors, E3 ubiquitin-ligases encoded by the ipaH genes, have a key role in the Shigella pathogenicity through the modulation of cellular ubiquitination that degrades host proteins. However, recent genomic studies identified ipaH genes in the genomes of Escherichia marmotae, a potential marmot pathogen, and an E. coli extracted from fecal samples of bovine calves, suggesting that non-human hosts may also be infected by these strains, potentially pathogenic to humans. We performed a comparative genomic study of the functional repertoires in the ipaH gene family in Shigella and enteroinvasive Escherichia from human and predicted non-human hosts. We found that fewer than half of Shigella genomes had a complete set of ipaH genes, with frequent gene losses and duplications that were not consistent with the species tree and nomenclature. Non-human host IpaH proteins had a diverse set of substrate-binding domains and, in contrast to the Shigella proteins, two variants of the NEL C-terminal domain. Inconsistencies between strains phylogeny and composition of effectors indicate horizontal gene transfer between E. coli adapted to different hosts. These results provide a framework for understanding of ipaH-mediated host-pathogens interactions and suggest a need for a genomic study of fecal samples from diseased animals.


Subject(s)
Shigella , Ubiquitin , Animals , Cattle , Chromosomes/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Ubiquitin/genetics , Ubiquitin-Protein Ligases/metabolism
15.
Sci Rep ; 12(1): 3447, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35236910

ABSTRACT

RNA editing in the form of substituting adenine with inosine (A-to-I editing) is the most frequent type of RNA editing in many metazoan species. In most species, A-to-I editing sites tend to form clusters and editing at clustered sites depends on editing of the adjacent sites. Although functionally important in some specific cases, A-to-I editing usually is rare. The exception occurs in soft-bodied coleoid cephalopods, where tens of thousands of potentially important A-to-I editing sites have been identified, making coleoids an ideal model for studying of properties and evolution of A-to-I editing sites. Here, we apply several diverse techniques to demonstrate a strong tendency of coleoid RNA editing sites to cluster along the transcript. We show that clustering of editing sites and correlated editing substantially contribute to the transcriptome diversity that arises due to extensive RNA editing. Moreover, we identify three distinct types of editing site clusters, varying in size, and describe RNA structural features and mechanisms likely underlying formation of these clusters. In particular, these observations may explain sequence conservation at large distances around editing sites and the observed dependency of editing on mutations in the vicinity of editing sites.


Subject(s)
Cephalopoda , Animals , Cephalopoda/genetics , Cephalopoda/metabolism , Inosine/metabolism , RNA/genetics , RNA Editing , RNA, Messenger/genetics
16.
Life (Basel) ; 12(2)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35207510

ABSTRACT

One of the most important challenges for soil science is to determine the limits for the sustainable functioning of contaminated ecosystems. The response of soil microbiomes to kerosene pollution is still poorly understood. Here, we model the impact of kerosene leakage on the composition of the topsoil microbiome in pot and field experiments with different loads of added kerosene (loads up to 100 g/kg; retention time up to 360 days). At four time points we measured kerosene concentration and sequenced variable regions of 16S ribosomal RNA in the microbial communities. Mainly alkaline Dystric Arenosols with low content of available phosphorus and soil organic matter had an increased fraction of Actinobacteriota, Firmicutes, Nitrospirota, Planctomycetota, and, to a lesser extent, Acidobacteriota and Verrucomicobacteriota. In contrast, in highly acidic Fibric Histosols, rich in soil organic matter and available phosphorus, the fraction of Acidobacteriota was higher, while the fraction of Actinobacteriota was lower. Albic Luvisols occupied an intermediate position in terms of both physicochemical properties and microbiome composition. The microbiomes of different soils show similar response to equal kerosene loads. In highly contaminated soils, the proportion of anaerobic bacteria-metabolizing hydrocarbons increased, whereas the proportion of aerobic bacteria decreased. During the field experiment, the soil microbiome recovered much faster than in the pot experiments, possibly due to migration of microorganisms from the polluted area. The microbial community of Fibric Histosols recovered in 6 months after kerosene had been loaded, while microbiomes of Dystric Arenosols and Albic Luvisols did not restore even after a year.

17.
Nucleic Acids Res ; 50(6): 3203-3225, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35166842

ABSTRACT

Eukaryotic chromosomes are spatially segregated into topologically associating domains (TADs). Some TADs are attached to the nuclear lamina (NL) through lamina-associated domains (LADs). Here, we identified LADs and TADs at two stages of Drosophila spermatogenesis - in bamΔ86 mutant testes which is the commonly used model of spermatogonia (SpG) and in larval testes mainly filled with spermatocytes (SpCs). We found that initiation of SpC-specific transcription correlates with promoters' detachment from the NL and with local spatial insulation of adjacent regions. However, this insulation does not result in the partitioning of inactive TADs into sub-TADs. We also revealed an increased contact frequency between SpC-specific genes in SpCs implying their de novo gathering into transcription factories. In addition, we uncovered the specific X chromosome organization in the male germline. In SpG and SpCs, a single X chromosome is stronger associated with the NL than autosomes. Nevertheless, active chromatin regions in the X chromosome interact with each other more frequently than in autosomes. Moreover, despite the absence of dosage compensation complex in the male germline, randomly inserted SpG-specific reporter is expressed higher in the X chromosome than in autosomes, thus evidencing that non-canonical dosage compensation operates in SpG.


Subject(s)
Chromatin , Drosophila , Animals , Cell Differentiation/genetics , Chromatin/genetics , Dosage Compensation, Genetic , Drosophila/genetics , Germ Cells , Male
18.
PLoS Comput Biol ; 17(11): e1009546, 2021 11.
Article in English | MEDLINE | ID: mdl-34793453

ABSTRACT

Construction of chromosomes 3D models based on single cell Hi-C data constitute an important challenge. We present a reconstruction approach, DPDchrom, that incorporates basic knowledge whether the reconstructed conformation should be coil-like or globular and spring relaxation at contact sites. In contrast to previously published protocols, DPDchrom can naturally form globular conformation due to the presence of explicit solvent. Benchmarking of this and several other methods on artificial polymer models reveals similar reconstruction accuracy at high contact density and DPDchrom advantage at low contact density. To compare 3D structures insensitively to spatial orientation and scale, we propose the Modified Jaccard Index. We analyzed two sources of the contact dropout: contact radius change and random contact sampling. We found that the reconstruction accuracy exponentially depends on the number of contacts per genomic bin allowing to estimate the reconstruction accuracy in advance. We applied DPDchrom to model chromosome configurations based on single-cell Hi-C data of mouse oocytes and found that these configurations differ significantly from a random one, that is consistent with other studies.


Subject(s)
Chromatin/chemistry , Single-Cell Analysis/methods , Algorithms , Animals , Mice , Protein Conformation
19.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-34406348

ABSTRACT

Over the past decade, genome-wide assays for chromatin interactions in single cells have enabled the study of individual nuclei at unprecedented resolution and throughput. Current chromosome conformation capture techniques survey contacts for up to tens of thousands of individual cells, improving our understanding of genome function in 3D. However, these methods recover a small fraction of all contacts in single cells, requiring specialised processing of sparse interactome data. In this review, we highlight recent advances in methods for the interpretation of single-cell genomic contacts. After discussing the strengths and limitations of these methods, we outline frontiers for future development in this rapidly moving field.


Subject(s)
Chromosomes , Computational Biology/methods , Models, Molecular , Molecular Conformation , Single-Cell Analysis/methods , Chromatin/chemistry , Chromatin/genetics , Chromosome Mapping/methods , Computer Graphics , DNA/chemistry , DNA/genetics , Data Analysis , Genomics/methods , Humans , Workflow
20.
NAR Cancer ; 3(3): zcab025, 2021 09.
Article in English | MEDLINE | ID: mdl-34316712

ABSTRACT

Since the discovery of the role of the APOBEC enzymes in human cancers, the mechanisms of this type of mutagenesis remain little understood. Theoretically, targeting of single-stranded DNA by the APOBEC enzymes could occur during cellular processes leading to the unwinding of DNA double-stranded structure. Some evidence points to the importance of replication in the APOBEC mutagenesis, while the role of transcription is still underexplored. Here, we analyzed gene expression and whole genome sequencing data from five types of human cancers with substantial APOBEC activity to estimate the involvement of transcription in the APOBEC mutagenesis and compare its impact with that of replication. Using the TCN motif as the mutation signature of the APOBEC enzymes, we observed a correlation of active APOBEC mutagenesis with gene expression, confirmed the increase of APOBEC-induced mutations in early-replicating regions and estimated the relative impact of transcription and replication on the APOBEC mutagenesis. We also found that the known effect of higher density of APOBEC-induced mutations on the lagging strand was highest in middle-replicating regions and observed higher APOBEC mutation density on the sense strand, the latter bias positively correlated with the gene expression level.

SELECTION OF CITATIONS
SEARCH DETAIL
...