Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
An Acad Bras Cienc ; 94(suppl 1): e20211142, 2022.
Article in English | MEDLINE | ID: mdl-35674550

ABSTRACT

The Snow Hill Island Formation (SHIF; late Campanian - early Maastrichtian) crops out in the northeast of the Antarctic Peninsula and constitutes the basal part of the late Campanian-early Maastrichtian sedimentary succession of the James Ross Basin (NG Sequence). Its major exposures occur at the James Ross and Vega islands. Several fossil-bearing localities have been identified in the SHIF providing a valuable fauna of invertebrates and vertebrates, and flora. Our study focuses on the vertebrate fauna recovered at Gamma and Cape Lamb members of the SHIF. The marine vertebrate assemblages include chondrichthyans, actinopterygians, and marine reptiles (elasmosaurid plesiosaurs and mosasaurs). A diverse terrestrial vertebrate assemblage has been reported being characterized by dinosaurs (sauropod, elasmarian ornithopods, nodosaurid ankylosaur, and a paravian theropod), pterosaurs and birds. Most SHIF dinosaurs share close affinities with penecontemporaneous taxa from southern South America, indicating that at least some continental vertebrates could disperse between southern South America and Antarctica during the Late Cretaceous. The Snow Hill Island Formation provides the most diverse Late Cretaceous marine and continental faunas from Antarctica. The present study summarizes previous and new vertebrate findings with the best actualized stratigraphical framework, providing a more complete fauna association and analyzing further perspectives.


Subject(s)
Dinosaurs , Animals , Antarctic Regions , Dinosaurs/anatomy & histology , Fossils , Reptiles
2.
J Vertebr Paleontol ; 42(2)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-37564697

ABSTRACT

A new extinct sclerorhynchoid sawfish, Ptychotrygon ameghinorum sp. nov., is presented here based on abundant isolated teeth and some dermal denticles, which were recovered from the Mata Amarilla Formation, belonging to the lower Upper Cretaceous of the Santa Cruz Province in the Austral Basin of Patagonia, Argentina. This new species is the first Ptychotrygon occurrence in the southern hemisphere, which so far only has been reported from northern hemisphere deposits (Europe, North Africa, and North America). The presence of P. ameghinorum sp. nov. in these southern high-latitude deposits of Patagonia, Argentina, extends the geographic range of Ptychotrygon considerably southwards. This distribution pattern in the "middle" Cretaceous seems to correlate with the South Atlantic opening at the end of the Albian. The presence of lateral cephalic dermal denticles and the simultaneous absence of rostral denticles in the abundant fossil material support the view that Ptychotrygon did not develop such rostral structures. A reinvestigation of all known species assigned to Ptychotrygon reveals that P. ellae is a junior synonym of P. boothi, P. benningensis belongs to Texatrygon, P. rugosum belongs to Asflapristis, and P. clementsi represents an unidentifiable species (Ptychotrygon? sp.). The stratigraphic distribution demonstrates that Ptychotrygon might have originated in the Albian in south-western Europe and subsequently dispersed to obtain its widest distribution during the Cenomanian. In the Coniacian, a steep diversity decline is recognizable with a subsequent distribution shift from Europe to North America.

3.
Nat Commun ; 8: 15951, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28654082

ABSTRACT

The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of ∼66 Ma (95% credibility interval, 56.64-77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives.


Subject(s)
Eutheria/genetics , Evolution, Molecular , Genome, Mitochondrial , Animals , Eutheria/classification , Fossils , Phylogeny , South America
4.
PLoS One ; 11(5): e0156558, 2016.
Article in English | MEDLINE | ID: mdl-27232883

ABSTRACT

"Notohippidae" is a probably paraphyletic family of medium sized notoungulates with complete dentition and early tendency to hypsodonty. They have been recorded from early Eocene to early Miocene, being particularly diverse by the late Oligocene. Although Rhynchippus equinus Ameghino is one of the most frequent notohippids in the fossil record, there are scarce data about cranial osteology other than the classical descriptions which date back to the early last century. In this context, we describe the exceptionally preserved specimen MPEF PV 695 (based on CT scanning technique and 3D reconstruction) with the aim of improving our knowledge of the species, especially regarding auditory region (petrosal, tympanic and surrounding elements), sphenoidal and occipital complexes. Besides a modular description of the whole skull, osteological correlates identified on the basicranium are used to infer some soft-tissue elements, especially those associated with vessels that supply the head, mainly intracranially. One of the most informative elements was the petrosal bone, whose general morphology matches that expected for a toxodont. The endocranial surface, together with the surrounding parietal, basisphenoid, occipital, and squamosal, enabled us to propose the location and communication of main venous sinuses of the lateral head wall (temporal, inferior and sigmoid sinuses), whereas the tympanic aspect and the identification of a posterior carotid artery canal provided strong evidence in support of an intratympanic course of the internal carotid artery, a controversial issue among notoungulates. Regarding the arrangement of tympanic and paratympanic spaces, the preservation of the specimen allowed us to appreciate the three connected spaces that constitute a heavily pneumatized middle ear; the epitympanic sinus, the tympanic cavity itself, and the ventral expansion of the tympanic cavity through the notably inflated bullae. We hope this study stimulates further inquires and provides potentially informative data for future research involving other representatives of the order.


Subject(s)
Auditory Cortex/anatomy & histology , Mammals/anatomy & histology , Skull/anatomy & histology , Animals , Auditory Cortex/diagnostic imaging , Imaging, Three-Dimensional , Paleontology , Skull/diagnostic imaging , Tomography, X-Ray Computed
5.
Nature ; 522(7554): 81-4, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-25799987

ABSTRACT

No large group of recently extinct placental mammals remains as evolutionarily cryptic as the approximately 280 genera grouped as 'South American native ungulates'. To Charles Darwin, who first collected their remains, they included perhaps the 'strangest animal[s] ever discovered'. Today, much like 180 years ago, it is no clearer whether they had one origin or several, arose before or after the Cretaceous/Palaeogene transition 66.2 million years ago, or are more likely to belong with the elephants and sirenians of superorder Afrotheria than with the euungulates (cattle, horses, and allies) of superorder Laurasiatheria. Morphology-based analyses have proved unconvincing because convergences are pervasive among unrelated ungulate-like placentals. Approaches using ancient DNA have also been unsuccessful, probably because of rapid DNA degradation in semitropical and temperate deposits. Here we apply proteomic analysis to screen bone samples of the Late Quaternary South American native ungulate taxa Toxodon (Notoungulata) and Macrauchenia (Litopterna) for phylogenetically informative protein sequences. For each ungulate, we obtain approximately 90% direct sequence coverage of type I collagen α1- and α2-chains, representing approximately 900 of 1,140 amino-acid residues for each subunit. A phylogeny is estimated from an alignment of these fossil sequences with collagen (I) gene transcripts from available mammalian genomes or mass spectrometrically derived sequence data obtained for this study. The resulting consensus tree agrees well with recent higher-level mammalian phylogenies. Toxodon and Macrauchenia form a monophyletic group whose sister taxon is not Afrotheria or any of its constituent clades as recently claimed, but instead crown Perissodactyla (horses, tapirs, and rhinoceroses). These results are consistent with the origin of at least some South American native ungulates from 'condylarths', a paraphyletic assembly of archaic placentals. With ongoing improvements in instrumentation and analytical procedures, proteomics may produce a revolution in systematics such as that achieved by genomics, but with the possibility of reaching much further back in time.


Subject(s)
Collagen Type I/chemistry , Fossils , Mammals/classification , Phylogeny , Amino Acid Sequence , Animals , Bone and Bones/chemistry , Cattle , Collagen Type I/genetics , Female , Perissodactyla/classification , Placenta , Pregnancy , Proteomics , South America
6.
Naturwissenschaften ; 99(6): 449-63, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22584426

ABSTRACT

We describe two isolated molariforms recovered from early-middle Eocene (early Lutetian) levels of northwestern Patagonia, Argentina. Comparisons with major lineages of therian and non-therian mammals lead us to refer them to a new genus and species of Gondwanatheria (Allotheria). There is a single root supporting each tooth that is very short, wide, rounded, and covered by cementum; the steep sidewalls, lack of a neck between the crown and root, and the heavily worn stage in both molariforms suggest that they were of a protohypsodont type. Both teeth are strongly worn at their centers, all along their length, with the labial edge less worn than the lingual; they show strong transverse crests that alternate with lingual grooves. The protohypsodont aspect of the teeth, as well as the strong, transverse crests, are suggestive of sudamericid affinities; on the other hand, the thin enamel layer and the occlusal pattern formed by the crests and grooves shows more similarities to molariform teeth of the Ferugliotheriidae. The new taxon adds evidence regarding the (1) extensive radiation of the Gondwanatheria throughout the Southern Hemisphere, (2) persistence of several lineages well after the Cretaceous/Paleogene boundary, and (3) early evolution of hypsodont types among South American herbivorous mammals.


Subject(s)
Fossils , Mammals/anatomy & histology , Mammals/classification , Tooth/anatomy & histology , Animals , Argentina , Tooth/ultrastructure , Tooth Root/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...