Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 239: 113619, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35605320

ABSTRACT

Phthalic acid esters (PAEs) are classified as endocrine disruptors, but it remains unclear if they can enter the marine food-web and result in severe health effects for organisms. Loggerhead turtles (Caretta caretta) can be chronically exposed to PAEs by ingesting plastic debris, but no information is available about PAEs levels in blood, and how these concentrations are related to diet during different life stages. This paper investigated, for the first time, six PAEs in blood of 18 wild-caught Mediterranean loggerhead turtles throughout solid-phase extraction coupled with gas chromatography-ion trap/mass spectrometry. Stable isotope analyses of carbon and nitrogen were also performed to assess the resource use pattern of loggerhead turtles. DEHP (12-63 ng mL-1) and DBP (6-57 ng mL-1) were the most frequently represented PAEs, followed by DiBP, DMP, DEP and DOP. The total PAEs concentration was highest in three turtles (124-260 ng mL-1) whereas three other turtles had concentrations below the detection limit. PAEs were clustered in three groups according to concentration in all samples: DEHP in the first group, DBP, DEP, and DiBP in the second group, and DOP and DMP in the third group. The total phthalates concentration did not differ between large-sized (96.3 ± 86.0 ng mL-1) and small-sized (67.1 ± 34.2 ng mL-1) turtles (p < 0.001). However, DMP and DEP were found only in large-sized turtles and DiBP and DBP had higher concentrations in large-sized turtles. On the other hand, DEHP and DOP were found in both small- and large-sized turtles with similar concentrations, i.e. ~ 21.0/32.0 ng mL-1 and ~ 7.1/9.9 ng mL-1, respectively. Winsored robust models indicated that δ13C is a good predictor for DBP and DiBP concentrations (significant Akaike Information criterion weight, AICwt). Our results indicate that blood is a good matrix to evaluate acute exposure to PAEs in marine turtles. Moreover, this approach is here suggested as a useful tool to explain the internal dose of PAEs in term of dietary habits (δ13C), suggesting that all marine species at high trophic levels may be particularly exposed to PAEs, despite their different dietary habitats and levels of exposure.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Turtles , Animals , Diet , Diethylhexyl Phthalate/analysis , Ecosystem , Esters/analysis , Gas Chromatography-Mass Spectrometry , Phthalic Acids/analysis
2.
Sci Rep ; 12(1): 7055, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35488113

ABSTRACT

Eastern gray whales' distribution range and plasticity in feeding behavior complicates the understanding of critical life-history such as pregnancy and lactation. Our goal was to determine if females who experienced gestation, gave birth, and lactated their calves, assimilated a high proportion of benthic amphipods from the Bering Sea, which are considered the species' main prey. We used Bayesian stable isotope mixing models to estimate the probability of contribution of food items sampled along the species' distributional range, using isotopic data on amphipods from the Bering Sea, mysids from Vancouver Island, and amphipods and polychaetes from Ojo de Liebre Lagoon. We sampled epidermal tissue from lactating females (n = 25) and calves (n = 34) and analyzed their carbon and nitrogen isotopic composition. Model outcome indicated that benthic amphipods from the Bering Sea were not the primary food for the eastern gray whale. Each mother performed a different feeding strategy, and prey from Vancouver Island were generally as important as that from the Bering Sea. Moreover, model results indicate a constant use of Ojo de Liebre Lagoon as a feeding ground. Our results appear to agree with previous studies that report continuous feeding by females to satisfy certain physiological requirements (e.g., fatty acids omega-6) during migration and breeding time. Future investigations of the isotopic composition of all those prey items that could be assimilated by the eastern gray whale emerge as critical. Both historical and recent information, that would provide insights in the species feeding ecology under past and present environmental conditions, should be considered as equally important to establish conservation and management plans.


Subject(s)
Lactation , Whales , Animals , Arctic Regions , Bayes Theorem , Epidermis , Female , Whales/physiology
3.
PLoS One ; 15(10): e0240171, 2020.
Article in English | MEDLINE | ID: mdl-33119639

ABSTRACT

The isotopic composition of baleen whales' epidermis structural layers can give information about dietary change over time. This study investigated if epidermis layers integrated isotopic values that record physiological changes from gestation to lactation. Epidermis tissues (n = 43) were collected from free ranging lactating female gray whale and calves during the beginning of three breeding seasons. Modelling of δ13C and δ15N values show intra- and inter-individual differences based on epidermal layers, age class and year of sampling. The isotopic composition of mother-calf pairs is correlated, and the estimates of the maximum mother-to-calf isotopic difference was ~1.4‰ for δ13C and between 1 and 1.5‰ for δ15N values. Change in δ15N values among epidermal layers in calves was associated with the transition from fetus to consumption of maternal milk. It is here proposed when lactation influences calf epidermis, δ15N values decrease consistently from the outermost to the innermost layer. However, if a calf was born only few days before collection, epidermis integrates more variable δ15N patterns because gestation still affects the isotopic composition of the layers. The possibility of calculating mother-to-calf nitrogen isotope fractionation, and the regularity of changes between calf layer δ15N values, allowed results of an isotopic clock model to predict the age of each calf when sampled with its mother. This model has the potential to be a straightforward method to estimate the beginning of lactation, therefore calf birth date when direct observations are not feasible. The non-lethal remote collection of epidermis appears to be an effective tool for the study of the physiology of reproduction of baleen whales. The parallel study of the three epidermal structural layers highlighted the importance of considering the unique mother-calf pair physiological status at the time of sampling time when stable isotope results are interpreted.


Subject(s)
Lactation/physiology , Pregnancy/physiology , Whales/physiology , Animals , Carbon Isotopes/pharmacokinetics , Epidermis/metabolism , Female , Male , Nitrogen Isotopes/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...