Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38082789

ABSTRACT

Electrical stimulation is one of several methods for controlling differentiation and proliferation of stem cells. This work demonstrated the use of nitrogen-doped ultra-nanocrystalline diamond (N-UNCD) electrodes as a substrate for the growth of human mesenchymal stem cells (hMSCs). As well as exhibiting a high charge injection capacity, N-UNCD displays high cytocompatibility making it suitable electrode material for stem cell stimulation.Clinical Relevance-This work establishes that N-UNCD electrodes can support the growth of hMSCs.


Subject(s)
Stem Cells , Humans , Electrodes , Cell Differentiation/physiology
2.
Chem Soc Rev ; 52(4): 1491-1518, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36734845

ABSTRACT

In the past 50 years, the advent of electronic technology to directly interface with neural tissue has transformed the fields of medicine and biology. Devices that restore or even replace impaired bodily functions, such as deep brain stimulators and cochlear implants, have ushered in a new treatment era for previously intractable conditions. Meanwhile, electrodes for recording and stimulating neural activity have allowed researchers to unravel the vast complexities of the human nervous system. Recent advances in semiconducting materials have allowed effective interfaces between electrodes and neuronal tissue through novel devices and structures. Often these are unattainable using conventional metallic electrodes. These have translated into advances in research and treatment. The development of semiconducting materials opens new avenues in neural interfacing. This review considers this emerging class of electrodes and how it can facilitate electrical, optical, and chemical sensing and modulation with high spatial and temporal precision. Semiconducting electrodes have advanced electrically based neural interfacing technologies owing to their unique electrochemical and photo-electrochemical attributes. Key operation modalities, namely sensing and stimulation in electrical, biochemical, and optical domains, are discussed, highlighting their contrast to metallic electrodes from the application and characterization perspective.


Subject(s)
Nervous System , Neurons , Humans , Electrodes , Neurons/physiology , Electricity
3.
Biomaterials ; 292: 121866, 2023 01.
Article in English | MEDLINE | ID: mdl-36526351

ABSTRACT

The endothelial junction plays a central role in regulating intravascular and interstitial tissue permeability. The ability to manipulate its integrity therefore not only facilitates an improved understanding of its underlying molecular mechanisms but also provides insight into potential therapeutic solutions. Herein, we explore the effects of short-duration nanometer-amplitude MHz-order mechanostimulation on interendothelial junction stability and hence the barrier capacity of endothelial monolayers. Following an initial transient in which the endothelial barrier is permeabilised due to Rho-ROCK-activated actin stress fibre formation and junction disruption typical of a cell's response to insults, we observe, quite uniquely, the integrity of the endothelial barrier to not only spontaneously recover but also to be enhanced considerably-without the need for additional stimuli or intervention. Central to this peculiar biphasic response, which has not been observed with other stimuli to date, is the role of second messenger calcium and cyclic adenosine monophosphate (cAMP) signalling. We show that intracellular Ca2+, modulated by the high frequency excitation, is responsible for activating reorganisation of the actin cytoskeleton in the barrier recovery phase, in which circumferential actin bundles are formed to stabilise the adherens junctions via a cAMP-mediated Epac1-Rap1 pathway. Despite the short-duration stimulation (8 min), the approximate 4-fold enhancement in the transendothelial electrical resistance (TEER) of endothelial cells from different tissue sources, and the corresponding reduction in paracellular permeability, was found to persist over hours. The effect can further be extended through multiple treatments without resulting in hyperpermeabilisation of the barrier, as found with prolonged use of chemical stimuli, through which only 1.1- to 1.2-fold improvement in TEER has been reported. Such an ability to regulate and enhance endothelial barrier capacity is particularly useful in the development of in vitro barrier models that more closely resemble their in vivo counterparts.


Subject(s)
Calcium , Endothelial Cells , Endothelial Cells/metabolism , Calcium/metabolism , Actins/metabolism , Cyclic AMP/metabolism , Adherens Junctions/metabolism
4.
Article in English | MEDLINE | ID: mdl-35830496

ABSTRACT

A number of studies have recently shown how surface topography can alter the behavior and differentiation patterns of different types of stem cells. Although the exact mechanisms and molecular pathways involved remain unclear, a consistent portion of the literature points to epigenetic changes induced by nuclear remodeling. In this study, we investigate the behavior of clinically relevant neural populations derived from human pluripotent stem cells when cultured on polydimethylsiloxane microgrooves (3 and 10 µm depth grooves) to investigate what mechanisms are responsible for their differentiation capacity and functional behavior. Our results show that microgrooves enhance cell alignment, modify nuclear geometry, and significantly increase cellular stiffness, which we were able to measure at high resolution with a combination of light and electron microscopy, scanning ion conductance microscopy (SICM), and atomic force microscopy (AFM) coupled with quantitative image analysis. The microgrooves promoted significant changes in the epigenetic landscape, as revealed by the expression of key histone modification markers. The main behavioral change of neural stem cells on microgrooves was an increase of neuronal differentiation under basal conditions on the microgrooves. Through measurements of cleaved Notch1 levels, we found that microgrooves downregulate Notch signaling. We in fact propose that microgroove topography affects the differentiation potential of neural stem cells by indirectly altering Notch signaling through geometric segregation and that this mechanism in parallel with topography-dependent epigenetic modulations acts in concert to enhance stem cell neuronal differentiation.

5.
Small ; 18(8): e2106823, 2022 02.
Article in English | MEDLINE | ID: mdl-35023629

ABSTRACT

Stem cell fate can be directed through the application of various external physical stimuli, enabling a controlled approach to targeted differentiation. Studies involving the use of dynamic mechanical cues driven by vibrational excitation to date have, however, been limited to low frequency (Hz to kHz) forcing over extended durations (typically continuous treatment for >7 days). Contrary to previous assertions that there is little benefit in applying frequencies beyond 1 kHz, we show here that high frequency MHz-order mechanostimulation in the form of nanoscale amplitude surface reflected bulk waves are capable of triggering differentiation of human mesenchymal stem cells from various donor sources toward an osteoblast lineage, with early, short time stimuli inducing long-term osteogenic commitment. More specifically, rapid treatments (10 min daily over 5 days) of the high frequency (10 MHz) mechanostimulation are shown to trigger significant upregulation in early osteogenic markers (RUNX2, COL1A1) and sustained increase in late markers (osteocalcin, osteopontin) through a mechanistic pathway involving piezo channel activation and Rho-associated protein kinase signaling. Given the miniaturizability and low cost of the devices, the possibility for upscaling the platform toward practical bioreactors, to address a pressing need for more efficient stem cell differentiation technologies in the pursuit of translatable regenerative medicine strategies, is ensivaged.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Cell Differentiation/physiology , Cells, Cultured , Humans , Osteoblasts , Osteogenesis/physiology , Regenerative Medicine
6.
Biomacromolecules ; 22(9): 3668-3678, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34460237

ABSTRACT

The development of protein-based 3D printable hydrogel systems with tunable structure and properties is a critical challenge in contemporary biomedicine. Particularly, 3D printing of modular hydrogels comprising different types of protein tertiary structure, such as globular and fibrous, has not yet been achieved. Here we report the extrusion-based 3D printing of hybrid hydrogels photochemically co-cross-linked between globular soy protein isolate (SPI) and fibrous silk fibroin (SF) for the first time. The hierarchical structure and organization of pristine SPI and SF, and 1:3 (SPI/SF) hybrid inks under various shear stress were investigated using in situ rheology combined with small-/ultra-small-angle neutron scattering (Rheo-SANS/USANS). The hybrid ink exhibited an isotropic mass fractal structure that was stable between tested shear rates of 0.1 and 100 s-1 (near printing shear). The kinetics of sol-gel transition during the photo-cross-linking reaction and the micromechanical properties of fabricated hydrogels were investigated using photorheology and atomic force microscopy, where the hybrid hydrogels exhibited tunable storage and Young's moduli in the range of 13-29 and 214-811 kPa, respectively. The cross-link density and printing accuracy of hybrid hydrogels and inks were observed to increase with the increase in SF content. The 3D printed hybrid hydrogels exhibited a micropore size larger than that of solution casted hydrogels; where the 3D printed 1:3 (SPI/SF) hybrid hydrogel showed a pore size about 7.6 times higher than that of the casted hydrogel. Moreover, the fabricated hybrid hydrogels exhibit good mouse fibroblast cell attachment, viability, and proliferation, demonstrating their potential for tissue engineering applications.


Subject(s)
Fibroins , Hydrogels , Animals , Mice , Printing, Three-Dimensional , Silk , Tissue Engineering , Tissue Scaffolds
7.
Adv Healthc Mater ; 10(14): e2100007, 2021 07.
Article in English | MEDLINE | ID: mdl-34170623

ABSTRACT

The ability of an orthopedic implant to integrate successfully with the surrounding bone tissue is imperative for optimal patient outcomes. Here, the recent advances and future prospects for diamond-based coatings of conventional osteo-implant materials (primarily titanium) are explored. The ability of these diamond coatings to enhance integration into existing bone, improved implant mechanical properties, facilitate surface chemical functionalization, and provide anti-microbial properties are discussed in context of orthopedic implants. These diamond-based materials may have the additional benefit of providing an osteo-inductive effect, enabling better integration into existing bone via stem cell recruitment and bone regeneration. Current and timely research is highlighted to support the discussion and suggestions in further improving implant integration via an osseoinductive effect from the diamond composite materials.


Subject(s)
Bone-Implant Interface , Diamond , Coated Materials, Biocompatible , Humans , Surface Properties , Titanium
8.
Biofabrication ; 13(2): 025004, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33710972

ABSTRACT

Traditional in vitro bioengineering approaches whereby only individual biophysical cues are manipulated at any one time are highly inefficient, falling short when recapitulating the complexity of the cardiac environment. Multiple biophysical cues are present in the native myocardial niche and are essential during development, as well as in maintenance of adult cardiomyocyte (CM) phenotype in both health and disease. This study establishes a novel biofabrication workflow to study and manipulate hiPSC-CMs and to understand how these cells respond to a multiplexed biophysical environment, namely 3D shape and substrate stiffness, at a single cell level. Silicon masters were fabricated and developed to generate inverse patterns of the desired 3D shapes in bas relief, which then were used to mold the designed microwell arrays into a hydrogel. Polyacrylamide (PAAm) was modified with the incorporation of acrylic acid to provide a carboxylic group conjugation site for adhesion motifs, without compromising capacity to modulate stiffness. In this manner, two individual parameters can be finely tuned independently within the hydrogel: the shape of the 3D microwell and its stiffness. The design allows the platform to isolate single hiPSC-CMs to study solely biophysical cues in the absence of cell-cell physical interaction. Under physiologic-like physical conditions (3D shape resembling that of adult CM and 9.83 kPa substrate stiffness that mimics muscle stiffness), isolated single hiPSC-CMs exhibit increased Cx-43 density, cell membrane stiffness and calcium transient amplitude; co-expression of the subpopulation-related MYL2-MYL7 proteins; and higher anisotropism than cells in pathologic-like conditions (flat surface and 112 kPa substrate stiffness). This demonstrates that supplying a physiologic or pathologic microenvironment to an isolated single hiPSC-CM in the absence of any physical cell-to-cell communication in this biofabricated platform leads to a significantly different set of cellular features, thus presenting a differential phenotype. Importantly, this demonstrates the high plasticity of hiPSC-CMs even in isolation. The ability of multiple biophysical cues to significantly influence isolated single hiPSC-CM phenotype and functionality highlights the importance of fine-tuning such cues for specific applications. This has the potential to produce more fit-for-purpose hiPSC-CMs. Further understanding of human cardiac development is enabled by the robust, versatile and reproducible biofabrication techniques applied here. We envision that this system could be easily applied to other tissues and cell types where the influence of cellular shape and stiffness of the surrounding environment is hypothesized to play an important role in physiology.


Subject(s)
Induced Pluripotent Stem Cells , Cell Differentiation , Humans , Myocytes, Cardiac , Phenotype , Physical Stimulation
9.
ACS Nano ; 15(3): 4034-4044, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33587607

ABSTRACT

The evolution of life on earth eventually leads to the emergence of species with increased complexity and diversity. Similarly, evolutionary chemical space exploration in the laboratory is a key step to pursue the structural and functional diversity of supramolecular systems. Here, we present a powerful tool that enables rapid peptide diversification and employ it to expand the chemical space for supramolecular functions. Central to this strategy is the exploitation of palladium-catalyzed Suzuki-Miyaura cross-coupling reactions to direct combinatorial synthesis of peptide arrays in microtiter plates under an open atmosphere. Taking advantage of this in situ library design, our results unambiguously deliver a fertile platform for creating a set of intriguing peptide functions including green fluorescent protein-like peptide emitters with chemically encoded emission colors, hierarchical self-assembly into nano-objects, and macroscopic hydrogels. This work also offers opportunities for quickly surveying the diversified peptide arrays and thereby identifying the structural factors that modulate peptide properties.


Subject(s)
Palladium , Peptides , Hydrogels
10.
Biomaterials ; 269: 120527, 2021 02.
Article in English | MEDLINE | ID: mdl-33246739

ABSTRACT

Hierarchical collagen fibers are the primary source of strength in musculoskeletal tendons, ligaments, and menisci. It has remained a challenge to develop these large fibers in engineered replacements or in vivo after injury. The objective of this study was to investigate the ability of restrained cell-seeded high density collagen gels to drive hierarchical fiber formation for multiple musculoskeletal tissues. We found boundary conditions applied to high density collagen gels were capable of driving tenocytes, ligament fibroblasts, and meniscal fibrochondrocytes to develop native-sized hierarchical collagen fibers 20-40 µm in diameter. The fibers organize similar to bovine juvenile collagen with native fibril banding patterns and hierarchical fiber bundles 50-350 µm in diameter by 6 weeks. Mirroring fiber organization, tensile properties of restrained samples improved significantly with time, reaching ~1 MPa. Additionally, tendon, ligament, and meniscal cells produced significantly different sized fibers, different degrees of crimp, and different GAG concentrations, which corresponded with respective juvenile tissue. To our knowledge, these are some of the largest, most organized fibers produced to date in vitro. Further, cells produced tissue specific hierarchical fibers, suggesting this system is a promising tool to better understand cellular regulation of fiber formation to better stimulate it in vivo after injury.


Subject(s)
Meniscus , Tissue Engineering , Animals , Cattle , Collagen , Ligaments , Tendons
11.
Adv Healthc Mater ; 10(1): e2001125, 2021 01.
Article in English | MEDLINE | ID: mdl-32996270

ABSTRACT

Stem cell fate is closely intertwined with microenvironmental and endogenous cues within the body. Recapitulating this dynamic environment ex vivo can be achieved through engineered biomaterials which can respond to exogenous stimulation (including light, electrical stimulation, ultrasound, and magnetic fields) to deliver temporal and spatial cues to stem cells. These stimuli-responsive biomaterials can be integrated into scaffolds to investigate stem cell response in vitro and in vivo, and offer many pathways of cellular manipulation: biochemical cues, scaffold property changes, drug release, mechanical stress, and electrical signaling. The aim of this review is to assess and discuss the current state of exogenous stimuli-responsive biomaterials, and their application in multipotent stem cell control. Future perspectives in utilizing these biomaterials for personalized tissue engineering and directing organoid models are also discussed.


Subject(s)
Stem Cells , Tissue Engineering , Biocompatible Materials , Cell Differentiation , Tissue Scaffolds
12.
Biotechnol J ; 16(3): e2000289, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32975037

ABSTRACT

Multimodal imaging promises to revolutionize the understanding of biological processes across scales in space and time by combining the strengths of multiple imaging techniques. Fluorescent nanodiamonds (FNDs) are biocompatible, chemically inert, provide high contrast in light- and electron-based microscopy, and are versatile optical quantum sensors. Here it is demonstrated that FNDs also provide high absorption contrast in nanoscale 3D soft X-ray tomograms with a resolution of 28 nm in all dimensions. Confocal fluorescence, atomic force, and scanning electron microscopy images of FNDs inside and on the surface of PC3 cancer cells with sub-micrometer precision are correlated. FNDs are found inside ≈1 µm sized vesicles present in the cytoplasm, providing direct evidence of the active uptake of bare FNDs by cancer cells. Imaging artefacts are quantified and separated from changes in cell morphology caused by sample preparation. These results demonstrate the utility of FNDs in multimodal imaging, contribute to the understanding of the fate of FNDs in cells, and open up new possibilities for biological imaging and sensing across the nano- and microscale.


Subject(s)
Nanodiamonds , Neoplasms , Fluorescent Dyes , Microscopy, Electron, Scanning , Multimodal Imaging , Neoplasms/diagnostic imaging , Tomography, X-Ray
13.
ACS Nano ; 14(12): 17321-17332, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33215498

ABSTRACT

A common approach to tailoring synthetic hydrogels for regenerative medicine applications involves incorporating RGD cell adhesion peptides, yet assessing the cellular response to engineered microenvironments at the nanoscale remains challenging. To date, no study has demonstrated how RGD concentration in hydrogels affects the presentation of individual cell surface receptors. Here we studied the interaction between human mesenchymal stem cells (hMSCs) and RGD-functionalized poly(ethylene glycol) hydrogels, by correlating macro- and nanoscale single-cell interfacial quantification techniques. We quantified RGD unbinding forces on a synthetic hydrogel using single cell atomic force spectroscopy, revealing that short-term binding of hMSCs was sensitive to RGD concentration. We also performed direct stochastic optical reconstruction microscopy (dSTORM) to quantify the molecular interactions between integrin α5ß1 and a biomaterial, unexpectedly revealing that increased integrin clustering at the hydrogel-cell interface correlated with fewer available RGD binding sites. Our complementary, quantitative approach uncovered mechanistic insights into specific stem cell-hydrogel interactions, where dSTORM provides nanoscale sensitivity to RGD-dependent differences in cell surface localization of integrin α5ß1. Our findings reveal that it is possible to precisely determine how peptide-functionalized hydrogels interact with cells at the molecular scale, thus providing a basis to fine-tune the spatial presentation of bioactive ligands.

14.
Nat Commun ; 11(1): 207, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31924755

ABSTRACT

Label-free surface-enhanced Raman spectroscopy (SERS) can interrogate systems by directly fingerprinting their components' unique physicochemical properties. In complex biological systems however, this can yield highly overlapping spectra that hinder sample identification. Here, we present an artificial-nose inspired SERS fingerprinting approach where spectral data is obtained as a function of sensor surface chemical functionality. Supported by molecular dynamics modeling, we show that mildly selective self-assembled monolayers can influence the strength and configuration in which analytes interact with plasmonic surfaces, diversifying the resulting SERS fingerprints. Since each sensor generates a modulated signature, the implicit value of increasing the dimensionality of datasets is shown using cell lysates for all possible combinations of up to 9 fingerprints. Reliable improvements in mean discriminatory accuracy towards 100% are achieved with each additional surface functionality. This arrayed label-free platform illustrates the wide-ranging potential of high-dimensionality artificial-nose based sensing systems for more reliable assessment of complex biological matrices.


Subject(s)
Biosensing Techniques , Electronic Nose , Spectrum Analysis, Raman/methods , Chemical Phenomena , Gold/chemistry , Metal Nanoparticles/chemistry , Models, Biological , Molecular Dynamics Simulation , Multivariate Analysis , Spectrum Analysis, Raman/instrumentation
15.
Adv Funct Mater ; 30(42): 2003710, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-34035794

ABSTRACT

The unique electrochemical properties of the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) make it an attractive material for use in neural tissue engineering applications. However, inadequate mechanical properties, and difficulties in processing and lack of biodegradability have hindered progress in this field. Here, the functionality of PEDOT:PSS for neural tissue engineering is improved by incorporating 3,4-ethylenedioxythiophene (EDOT) oligomers, synthesized using a novel end-capping strategy, into block co-polymers. By exploiting end-functionalized oligoEDOT constructs as macroinitiators for the polymerization of poly(caprolactone), a block co-polymer is produced that is electroactive, processable, and bio-compatible. By combining these properties, electroactive fibrous mats are produced for neuronal culture via solution electrospinning and melt electrospinning writing. Importantly, it is also shown that neurite length and branching of neural stem cells can be enhanced on the materials under electrical stimulation, demonstrating the promise of these scaffolds for neural tissue engineering.

16.
J Colloid Interface Sci ; 546: 192-210, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30921674

ABSTRACT

The attachment of single-celled organisms, namely bacteria and fungi, to abiotic surfaces is of great interest to both the scientific and medical communities. This is because the interaction of such cells has important implications in a range of areas, including biofilm formation, biofouling, antimicrobial surface technologies, and bio-nanotechnologies, as well as infection development, control, and mitigation. While central to many biological phenomena, the factors which govern microbial surface attachment are still not fully understood. This lack of understanding is a direct consequence of the complex nature of cell-surface interactions, which can involve both specific and non-specific interactions. For applications involving micro- and nano-structured surfaces, developing an understanding of such phenomenon is further complicated by the diverse nature of surface architectures, surface chemistry, variation in cellular physiology, and the intended technological output. These factors are extremely important to understand in the emerging field of antibacterial nanostructured surfaces. The aim of this perspective is to re-frame the discussion surrounding the mechanism of nanostructured-microbial surface interactions. Broadly, the article reviews our current understanding of these phenomena, while highlighting the knowledge gaps surrounding the adhesive forces which govern bacterial-nanostructure interactions and the role of cell membrane rigidity in modulating surface activity. The roles of surface charge, cell rigidity, and cell-surface adhesion force in bacterial-surface adsorption are discussed in detail. Presently, most studies have overlooked these areas, which has left many questions unanswered. Further, this perspective article highlights the numerous experimental issues and misinterpretations which surround current studies of antibacterial nanostructured surfaces.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Nanostructures/chemistry , Anti-Bacterial Agents/chemistry , Bacterial Adhesion/drug effects , Cell Adhesion/drug effects , Elasticity/drug effects , Gram-Negative Bacteria/chemistry , Gram-Negative Bacteria/cytology , Gram-Positive Bacteria/chemistry , Gram-Positive Bacteria/cytology , Particle Size , Surface Properties
17.
ACS Nano ; 13(3): 2888-2900, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30741535

ABSTRACT

Nucleic acid nanostructures have attracted significant interest as potential therapeutic and diagnostic platforms due to their intrinsic biocompatibility and biodegradability, structural and functional diversity, and compatibility with various chemistries for modification and stabilization. Among the fabrication approaches for such structures, the rolling circle techniques have emerged as particularly promising, producing morphologically round, flower-shaped nucleic acid particles: typically hybrid composites of long nucleic acid strands and inorganic magnesium pyrophosphate (Mg2PPi). These constructs are known to form via anisotropic nucleic acid-driven crystallization in a sequence-independent manner, rendering monodisperse and densely packed RNA or DNA-inorganic composites. However, it still remains to fully explore how flexible polymer-like RNA or DNA strands (acting as biomolecular additives) mediate the crystallization process of Mg2PPi and affect the structure and properties of the product crystals. To address this, we closely examined nanoscale details to mesoscopic features of Mg2PPi/DNA hybrid composites fabricated by two approaches, namely rolling circle amplification (RCA)-based in situ synthesis and long synthetic DNA-mediated crystallization. Similar to the DNA constructs fabricated by RCA, the rapid crystallization of Mg2PPi was retarded on a short-range order when we precipitated the crystals in the presence of presynthesized long DNA, which resulted in effective incorporation of biomolecular additives such as DNA and enzymes. These findings further provide a more feasible way to encapsulate bioactive enzymes within DNA constructs compared to in situ RCA-mediated synthesis, i.e., by not only protecting them from possible denaturation under the reaction conditions but also preventing nonselective association of proteins arising from the RCA reaction mixtures.


Subject(s)
DNA/chemistry , Diphosphates/chemistry , Magnesium Compounds/chemistry , Nanostructures/chemistry , Crystallization , DNA/chemical synthesis , DNA/metabolism , Diphosphates/metabolism , Magnesium Compounds/metabolism , Molecular Structure , Nucleic Acid Amplification Techniques , Particle Size , Ribonuclease, Pancreatic/chemistry , Ribonuclease, Pancreatic/metabolism
18.
J Am Chem Soc ; 139(39): 13592-13595, 2017 10 04.
Article in English | MEDLINE | ID: mdl-28902999

ABSTRACT

We report the thermodynamically controlled growth of solution-processable and free-standing nanosheets via peptide assembly in two dimensions. By taking advantage of self-sorting between peptide ß-strands and hydrocarbon chains, we have demonstrated the formation of Janus 2D structures with single-layer thickness, which enable a predetermined surface heterofunctionalization. A controlled 2D-to-1D morphological transition was achieved by subtly adjusting the intermolecular forces. These nanosheets provide an ideal substrate for the engineering of guest components (e.g., proteins and nanoparticles), where enhanced enzyme activity was observed. We anticipate that sequence-specific programmed peptides will offer promise as design elements for 2D assemblies with face-selective functionalization.


Subject(s)
Nanostructures/chemistry , Peptides/chemical synthesis , Molecular Structure , Particle Size , Peptides/chemistry , Thermodynamics
19.
Macromol Biosci ; 17(7)2017 07.
Article in English | MEDLINE | ID: mdl-28322510

ABSTRACT

Cardiovascular diseases, including myocardial infarction, are the cause of significant morbidity and mortality globally. Tissue engineering is a key emerging treatment method for supporting and repairing the cardiac scar tissue caused by myocardial infarction. Creating cell supportive scaffolds that can be directly implanted on a myocardial infarct is an attractive solution. Hydrogels made of collagen are highly biocompatible materials that can be molded into a range of shapes suitable for cardiac patch applications. The addition of mechanically reinforcing materials, carbon nanotubes, at subtoxic levels allows for the collagen hydrogels to be strengthened, up to a toughness of 30 J m-1 and a two to threefold improvement in Youngs' modulus, thus improving their viability as cardiac patch materials. The addition of carbon nanotubes is shown to be both nontoxic to stem cells, and when using single-walled carbon nanotubes, supportive of live, beating cardiac cells, providing a pathway for the further development of a cardiac patch.


Subject(s)
Biocompatible Materials/chemistry , Collagen/chemistry , Materials Testing , Myocardial Infarction , Myocardium/metabolism , Nanotubes, Carbon/chemistry , Animals , Mice , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/surgery , Myocardium/pathology , Myocytes, Cardiac/pathology
20.
Adv Healthc Mater ; 5(12): 1471-80, 2016 06.
Article in English | MEDLINE | ID: mdl-27126086

ABSTRACT

The combination of stem cell therapy with a supportive scaffold is a promising approach to improving cardiac tissue engineering. Stem cell therapy can be used to repair nonfunctioning heart tissue and achieve myocardial regeneration, and scaffold materials can be utilized in order to successfully deliver and support stem cells in vivo. Current research describes passive scaffold materials; here an electroactive scaffold that provides electrical, mechanical, and topographical cues to induced human pluripotent stem cells (iPS) is presented. The poly(lactic-co-glycolic acid) fiber scaffold coated with conductive polymer polypyrrole (PPy) is capable of delivering direct electrical and mechanical stimulation to the iPS. The electroactive scaffolds demonstrate no cytotoxic effects on the iPS as well as an increased expression of cardiac markers for both stimulated and unstimulated protocols. This study demonstrates the first application of PPy as a supportive electroactive material for iPS and the first development of a fiber scaffold capable of dynamic mechanical actuation.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Myocardial Contraction , Myocardium/metabolism , Tissue Scaffolds/chemistry , Antigens, Differentiation/biosynthesis , Electric Stimulation , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells/cytology , Lactic Acid/chemistry , Myocardium/cytology , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Polymers/chemistry , Pyrroles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...