Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 353
Filter
2.
Res Sq ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38883780

ABSTRACT

Antiretroviral therapy (ART) improves the quality of life for those living with the human immunodeficiency virus type one (HIV-1). However, poor compliance reduces ART effectiveness and leads to immune compromise, viral mutations, and disease co-morbidities. A novel drug formulation is made whereby a lipid nanoparticle (LNP) carrying rilpivirine (RPV) is decorated with the C-C chemokine receptor type 5 (CCR5). This facilitates myeloid drug depot deposition. Particle delivery to viral reservoirs is tracked by positron emission tomography. The CCR5-mediated RPV LNP cell uptake and retention reduce HIV-1 replication in human monocyte-derived macrophages and infected humanized mice. Focused ultrasound allows the decorated LNP to penetrate the blood-brain barrier and reach brain myeloid cells. These findings offer a role for CCR5-targeted therapeutics in antiretroviral delivery to optimize HIV suppression.

3.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38399364

ABSTRACT

Disordered immunity, aging, human immunodeficiency virus type one (HIV-1) infection, and responses to antiretroviral therapy are linked. However, how each factor is linked with the other(s) remains incompletely understood. It has been reported that accelerated aging, advanced HIV-1 infection, inflammation, and host genetic factors are associated with host cellular, mitochondrial, and metabolic alterations. However, the underlying mechanism remains elusive. With these questions in mind, we used chronically HIV-1-infected CD34-NSG humanized mice (hu-mice) to model older people living with HIV and uncover associations between HIV-1 infection and aging. Adult humanized mice were infected with HIV-1 at the age of 20 weeks and maintained for another 40 weeks before sacrifice. Animal brains were collected and subjected to transcriptomics, qPCR, and immunofluorescence assays to uncover immune disease-based biomarkers. CD4+ T cell decline was associated with viral level and age. Upregulated C1QA, CD163, and CXCL16 and downregulated LMNA and CLU were identified as age-associated genes tied to HIV-1 infection. Ingenuity pathway analysis affirmed links to innate immune activation, pyroptosis signaling, neuroinflammation, mitochondrial dysfunction, cellular senescence, and neuronal dysfunction. In summary, CD34-NSG humanized mice are identified as a valuable model for studying HIV-1-associated aging. Biomarkers of immune senescence and neuronal signaling are both age- and virus-associated. By exploring the underlying biological mechanisms that are linked to these biomarkers, interventions for next generation HIV-1-infected patients can be realized.

4.
Pharmaceutics ; 16(2)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38399244

ABSTRACT

The success of long-acting (LA) drug delivery systems (DDSs) is linked to their biocompatible polymers. These are used for extended therapeutic release. For treatment or prevention of human immune deficiency virus type one (HIV-1) infection, LA DDSs hold promise for improved regimen adherence and reduced toxicities. Current examples include Cabenuva, Apretude, and Sunlenca. Each is safe and effective. Alternative promising DDSs include implants, prodrugs, vaginal rings, and microarray patches. Each can further meet patients' needs. We posit that the physicochemical properties of the formulation chemical design can optimize drug release profiles. We posit that the strategic design of LA DDS polymers will further improve controlled drug release to simplify dosing schedules and improve regimen adherence.

5.
Front Pharmacol ; 14: 1294579, 2023.
Article in English | MEDLINE | ID: mdl-38149054

ABSTRACT

The World Health Organization has recommended dolutegravir (DTG) as a preferred first-line treatment for treatment naive and experienced people living with human immunodeficiency virus type one (PLWHIV). Based on these recommendations 15 million PLWHIV worldwide are expected to be treated with DTG regimens on or before 2025. This includes pregnant women. Current widespread use of DTG is linked to the drug's high potency, barrier to resistance, and cost-effectiveness. Despite such benefits, potential risks of DTG-linked fetal neurodevelopmental toxicity remain a concern. To this end, novel formulation strategies are urgently needed in order to maximize DTG's therapeutic potentials while limiting adverse events. In regard to potential maternal fetal toxicities, we hypothesized that injectable long-acting nanoformulated DTG (NDTG) could provide improved safety by reducing drug fetal exposures compared to orally administered native drug. To test this notion, we treated pregnant C3H/HeJ mice with daily oral native DTG at a human equivalent dosage (5 mg/kg; n = 6) or vehicle (control; n = 8). These were compared against pregnant mice injected with intramuscular (IM) NDTG formulations given at 45 (n = 3) or 25 (n = 4) mg/kg at one or two doses, respectively. Treatment began at gestation day (GD) 0.5. Magnetic resonance imaging scanning of live dams at GD 17.5 was performed to obtain T1 maps of the embryo brain to assess T1 relaxation times of drug-induced oxidative stress. Significantly lower T1 values were noted in daily oral native DTG-treated mice, whereas comparative T1 values were noted between control and NDTG-treated mice. This data reflected prevention of DTG-induced oxidative stress when delivered as NDTG. Proteomic profiling of embryo brain tissues harvested at GD 17.5 demonstrated reductions in oxidative stress, mitochondrial impairments, and amelioration of impaired neurogenesis and synaptogenesis in NDTG-treated mice. Pharmacokinetic (PK) tests determined that both daily oral native DTG and parenteral NDTG achieved clinically equivalent therapeutic plasma DTG levels in dams (4,000-6,500 ng/mL). Importantly, NDTG led to five-fold lower DTG concentrations in embryo brain tissues compared to daily oral administration. Altogether, our preliminary work suggests that long-acting drug delivery can limit DTG-linked neurodevelopmental deficits.

6.
Mol Neurodegener ; 18(1): 97, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38111016

ABSTRACT

BACKGROUND: Regulatory T cells (Tregs) maintain immune tolerance. While Treg-mediated neuroprotective activities are now well-accepted, the lack of defined antigen specificity limits their therapeutic potential. This is notable for neurodegenerative diseases where cell access to injured brain regions is required for disease-specific therapeutic targeting and improved outcomes. To address this need, amyloid-beta (Aß) antigen specificity was conferred to Treg responses by engineering the T cell receptor (TCR) specific for Aß (TCRAß). The TCRAb were developed from disease-specific T cell effector (Teff) clones. The ability of Tregs expressing a transgenic TCRAß (TCRAß -Tregs) to reduce Aß burden, transform effector to regulatory cells, and reverse disease-associated neurotoxicity proved beneficial in an animal model of Alzheimer's disease. METHODS: TCRAß -Tregs were generated by CRISPR-Cas9 knockout of endogenous TCR and consequent incorporation of the transgenic TCRAb identified from Aß reactive Teff monoclones. Antigen specificity was confirmed by MHC-Aß-tetramer staining. Adoptive transfer of TCRAß-Tregs to mice expressing a chimeric mouse-human amyloid precursor protein and a mutant human presenilin-1 followed measured behavior, immune, and immunohistochemical outcomes. RESULTS: TCRAß-Tregs expressed an Aß-specific TCR. Adoptive transfer of TCRAß-Tregs led to sustained immune suppression, reduced microglial reaction, and amyloid loads. 18F-fluorodeoxyglucose radiolabeled TCRAß-Treg homed to the brain facilitating antigen specificity. Reduction in amyloid load was associated with improved cognitive functions. CONCLUSIONS: TCRAß-Tregs reduced amyloid burden, restored brain homeostasis, and improved learning and memory, supporting the increased therapeutic benefit of antigen specific Treg immunotherapy for AD.


Subject(s)
Alzheimer Disease , Animals , Humans , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloidogenic Proteins , Disease Models, Animal , Mice, Transgenic , Presenilin-1/genetics , Receptors, Antigen, T-Cell , T-Lymphocytes, Regulatory
7.
Cell Biosci ; 13(1): 209, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964309

ABSTRACT

Synucleinopathies are a group of neurodegenerative disorders characterized by pathologic aggregates of neural and glial α-synuclein (α-syn) in the form of Lewy bodies (LBs), Lewy neurites, and cytoplasmic inclusions in both neurons and glia. Two major classes of synucleinopathies are LB disease and multiple system atrophy. LB diseases include Parkinson's disease (PD), PD with dementia, and dementia with LBs. All are increasing in prevalence. Effective diagnostics, disease-modifying therapies, and therapeutic monitoring are urgently needed. Diagnostics capable of differentiating LB diseases are based on signs and symptoms which might overlap. To date, no specific diagnostic test exists despite disease-specific pathologies. Diagnostics are aided by brain imaging and cerebrospinal fluid evaluations, but more accessible biomarkers remain in need. Mechanisms of α-syn evolution to pathologic oligomers and insoluble fibrils can provide one of a spectrum of biomarkers to link complex neural pathways to effective therapies. With these in mind, we review promising biomarkers linked to effective disease-modifying interventions.

8.
NeuroImmune Pharm Ther ; 2(3): 317-330, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38023614

ABSTRACT

Objectives: To evaluate the linkage between age and deficits in innate and adaptive immunity which heralds both Alzheimer's disease (AD) onset and progression. The pathobiological events which underlie and tie these outcomes remain not fully understood. Methods: To investigate age-dependent immunity in AD, we evaluated innate and adaptive immunity in coordinate studies of regulatory T cell (Treg) function, T cell frequencies, and microglial integrity. These were assessed in blood, peripheral lymphoid tissues, and the hippocampus of transgenic (Tg) amyloid precursor protein/presenilin 1 (APP/PS1) against non-Tg mice. Additionally, immune arrays of hippocampal tissue were performed at 4, 6, 12, and 20 months of age. Results: APP/PS1 mice showed progressive impairment of Treg immunosuppressive function with age. There was partial restoration of Treg function in 20-month-old mice. Ingenuity pathway analyses of hippocampal tissues were enriched in inflammatory, oxidative, and cellular activation pathways that paralleled advancing age and AD-pathobiology. Operative genes in those pathways included, but were not limited to triggering receptor on myeloid cells 1 (TREM1), T helper type 1 (Th1), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways. Interleukin-17 (IL-17), nitric oxide, acute phase, and T cell receptor signaling pathways were also perturbed. Significant inflammation was observed at 6- and 12-months. However, at 20-months, age associated partial restoration of Treg function reduced inflammatory phenotype. Conclusions: Impaired Treg function, inflammation and oxidative stress were associated with AD pathology. Age associated partial restoration of Treg function in old mice reduced the hippocampal inflammatory phenotype. Restoring Treg suppressive function can be a therapeutic modality for AD.

9.
Nanomedicine ; 54: 102711, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37813236

ABSTRACT

For the past decades, gene editing demonstrated the potential to attenuate each of the root causes of genetic, infectious, immune, cancerous, and degenerative disorders. More recently, Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9 (CRISPR-Cas9) editing proved effective for editing genomic, cancerous, or microbial DNA to limit disease onset or spread. However, the strategies to deliver CRISPR-Cas9 cargos and elicit protective immune responses requires safe delivery to disease targeted cells and tissues. While viral vector-based systems and viral particles demonstrate high efficiency and stable transgene expression, each are limited in their packaging capacities and secondary untoward immune responses. In contrast, the nonviral vector lipid nanoparticles were successfully used for as vaccine and therapeutic deliverables. Herein, we highlight each available gene delivery systems for treating and preventing a broad range of infectious, inflammatory, genetic, and degenerative diseases. STATEMENT OF SIGNIFICANCE: CRISPR-Cas9 gene editing for disease treatment and prevention is an emerging field that can change the outcome of many chronic debilitating disorders.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Gene Transfer Techniques , Genetic Therapy
10.
Pathogens ; 12(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37513726

ABSTRACT

A major roadblock to achieving a cure for human immunodeficiency virus type one (HIV-1) is the persistence of latent viral infections in the cells and tissue compartments of an infected human host. Latent HIV-1 proviral DNA persists in resting memory CD4+ T cells and mononuclear phagocytes (MPs; macrophages, microglia, and dendritic cells). Tissue viral reservoirs of both cell types reside in the gut, lymph nodes, bone marrow, spleen, liver, kidney, skin, adipose tissue, reproductive organs, and brain. However, despite the identification of virus-susceptible cells, several limitations persist in identifying broad latent reservoirs in infected persons. The major limitations include their relatively low abundance, the precise identification of latently infected cells, and the lack of biomarkers for identifying latent cells. While primary MP and CD4+ T cells and transformed cell lines are used to interrogate mechanisms of HIV-1 persistence, they often fail to accurately reflect the host cells and tissue environments that carry latent infections. Given the host specificity of HIV-1, there are few animal models that replicate the natural course of viral infection with any precision. These needs underlie the importance of humanized mouse models as both valuable and cost-effective tools for studying viral latency and subsequently identifying means of eliminating it. In this review, we discuss the advantages and limitations of humanized mice for studies of viral persistence and latency with an eye toward using these models to test antiretroviral and excision therapeutics. The goals of this research are to use the models to address how and under which circumstances HIV-1 latency can be detected and eliminated. Targeting latent reservoirs for an ultimate HIV-1 cure is the task at hand.

11.
Adv Drug Deliv Rev ; 200: 115009, 2023 09.
Article in English | MEDLINE | ID: mdl-37451501

ABSTRACT

Adherence to daily oral antiretroviral therapy (ART) is a barrier to both treatment and prevention of human immunodeficiency virus (HIV) infection. To overcome limitations of life-long daily regimen adherence, long-acting (LA) injectable antiretroviral (ARV) drugs, nanoformulations, implants, vaginal rings, microarray patches, and ultra-long-acting (ULA) prodrugs are now available or in development. These medicines enable persons who are or at risk for HIV infection to be treated with simplified ART regimens. First-generation LA cabotegravir, rilpivirine, and lenacapavir injectables and a dapivirine vaginal ring are now in use. However, each remains limited by existing dosing intervals, ease of administration, or difficulties in finding drug partners. ULA ART regimens provide an answer, but to date, such next-generation formulations remain in development. Establishing the niche will require affirmation of extended dosing, improved access, reduced injection volumes, improved pharmacokinetic profiles, selections of combination treatments, and synchronization of healthcare support. Based on such needs, this review highlights recent pharmacological advances and a future treatment perspective. While first-generation LA ARTs are available for HIV care, they remain far from ideal in meeting patient needs. ULA medicines, now in advanced preclinical development, may close gaps toward broader usage and treatment options.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Female , Humans , HIV Infections/drug therapy , HIV Infections/prevention & control , Rilpivirine/pharmacology , Rilpivirine/therapeutic use , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Injections
12.
Transl Neurodegener ; 12(1): 26, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217980

ABSTRACT

BACKGROUND: The clinical utility and safety of sargramostim has previously been reported in cancer, acute radiation syndrome, autoimmune disease, inflammatory conditions, and Alzheimer's disease. The safety, tolerability, and mechanisms of action in Parkinson's disease (PD) during extended use has not been evaluated. METHODS: As a primary goal, safety and tolerability was assessed in five PD patients treated with sargramostim (Leukine®, granulocyte-macrophage colony-stimulating factor) for 33 months. Secondary goals included numbers of CD4+ T cells and monocytes and motor functions. Hematologic, metabolic, immune, and neurological evaluations were assessed during a 5-day on, 2-day off therapeutic regimen given at 3 µg/kg. After 2 years, drug use was discontinued for 3 months. This was then followed by an additional 6 months of treatment. RESULTS: Sargramostim-associated adverse events included injection-site reactions, elevated total white cell counts, and bone pain. On drug, blood analyses and metabolic panels revealed no untoward side effects linked to long-term treatment. Unified Parkinson's Disease Rating Scale scores remained stable throughout the study while regulatory T cell number and function were increased. In the initial 6 months of treatment, transcriptomic and proteomic monocyte tests demonstrated autophagy and sirtuin signaling. This finding paralleled anti-inflammatory and antioxidant activities within both the adaptive and innate immune profile arms. CONCLUSIONS: Taken together, the data affirmed long-term safety as well as immune and anti-inflammatory responses reflecting clinical stability in PD under the sargramostim treatment. Confirmation in larger patient populations is planned in a future phase II evaluation. TRIAL REGISTRATION: ClinicalTrials.gov: NCT03790670, Date of Registration: 01/02/2019, URL: https://clinicaltrials.gov/ct2/show/NCT03790670?cond=leukine+parkinson%27s&draw=2&rank=2 .


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Parkinson Disease , Humans , Granulocyte-Macrophage Colony-Stimulating Factor/adverse effects , Parkinson Disease/drug therapy , Proteomics , Biomarkers
13.
Proc Natl Acad Sci U S A ; 120(19): e2217887120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126704

ABSTRACT

Treatment of HIV-1ADA-infected CD34+ NSG-humanized mice with long-acting ester prodrugs of cabotegravir, lamivudine, and abacavir in combination with native rilpivirine was followed by dual CRISPR-Cas9 C-C chemokine receptor type five (CCR5) and HIV-1 proviral DNA gene editing. This led to sequential viral suppression, restoration of absolute human CD4+ T cell numbers, then elimination of replication-competent virus in 58% of infected mice. Dual CRISPR therapies enabled the excision of integrated proviral DNA in infected human cells contained within live infected animals. Highly sensitive nucleic acid nested and droplet digital PCR, RNAscope, and viral outgrowth assays affirmed viral elimination. HIV-1 was not detected in the blood, spleen, lung, kidney, liver, gut, bone marrow, and brain of virus-free animals. Progeny virus from adoptively transferred and CRISPR-treated virus-free mice was neither detected nor recovered. Residual HIV-1 DNA fragments were easily seen in untreated and viral-rebounded animals. No evidence of off-target toxicities was recorded in any of the treated animals. Importantly, the dual CRISPR therapy demonstrated statistically significant improvements in HIV-1 cure percentages compared to single treatments. Taken together, these observations underscore a pivotal role of combinatorial CRISPR gene editing in achieving the elimination of HIV-1 infection.


Subject(s)
HIV Infections , HIV Seropositivity , Mice , Animals , Humans , Anti-Retroviral Agents/therapeutic use , Gene Editing , Proviruses/genetics , Receptors, CCR5
14.
NeuroImmune Pharm Ther ; 2(1): 63-69, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37027345

ABSTRACT

Objectives: Spatial-temporal biodistribution of antiretroviral drugs (ARVs) can now be achieved using MRI by utilizing chemical exchange saturation transfer (CEST) contrasts. However, the presence of biomolecules in tissue limits the specificity of current CEST methods. To overcome this limitation, a Lorentzian line-shape fitting algorithm was developed that simultaneously fits CEST peaks of ARV protons on its Z-spectrum. Case presentation: This algorithm was tested on the common first line ARV, lamivudine (3TC), that has two peaks resulting from amino (-NH2) and hydroxyl (-OH) protons in 3TC. The developed dual-peak Lorentzian function fitted these two peaks simultaneously, and used the ratio of -NH2 and -OH CEST contrasts as a constraint parameter to measure 3TC presence in brains of drug-treated mice. 3TC biodistribution calculated using the new algorithm was compared against actual drug levels measured using UPLC-MS/MS. In comparison to the method that employs the -NH2 CEST peak only, the dual-peak Lorentzian fitting algorithm showed stronger correlation with brain tissue 3TC levels, signifying estimation of actual drug levels. Conclusions: We concluded that 3TC levels can be extracted from confounding CEST effects of tissue biomolecules resulting in improved specificity for drug mapping. This algorithm can be expanded to measure a variety of ARVs using CEST MRI.

15.
Front Toxicol ; 5: 1113032, 2023.
Article in English | MEDLINE | ID: mdl-36896351

ABSTRACT

More than fifteen million women with the human immunodeficiency virus type-1 (HIV-1) infection are of childbearing age world-wide. Due to improved and affordable access to antiretroviral therapy (ART), the number of in utero antiretroviral drug (ARV)-exposed children has exceeded a million and continues to grow. While most recommended ART taken during pregnancy suppresses mother to child viral transmission, the knowledge of drug safety linked to fetal neurodevelopment remains an area of active investigation. For example, few studies have suggested that ARV use can be associated with neural tube defects (NTDs) and most notably with the integrase strand transfer inhibitor (INSTI) dolutegravir (DTG). After risk benefit assessments, the World Health Organization (WHO) made recommendations for DTG usage as a first and second-line preferred treatment for infected populations including pregnant women and those of childbearing age. Nonetheless, long-term safety concerns remain for fetal health. This has led to a number of recent studies underscoring the need for biomarkers to elucidate potential mechanisms underlying long-term neurodevelopmental adverse events. With this goal in mind, we now report the inhibition of matrix metalloproteinases (MMPs) activities by INSTIs as an ARV class effect. Balanced MMPs activities play a crucial role in fetal neurodevelopment. Inhibition of MMPs activities by INSTIs during neurodevelopment could be a potential mechanism for adverse events. Thus, comprehensive molecular docking testing of the INSTIs, DTG, bictegravir (BIC), and cabotegravir (CAB), against twenty-three human MMPs showed broad-spectrum inhibition. With a metal chelating chemical property, each of the INSTI were shown to bind Zn++ at the MMP's catalytic domain leading to MMP inhibition but to variable binding energies. These results were validated in myeloid cell culture experiments demonstrating MMP-2 and 9 inhibitions by DTG, BIC and CAB and even at higher degree than doxycycline (DOX). Altogether, these data provide a potential mechanism for how INSTIs could affect fetal neurodevelopment.

16.
Nanomedicine ; 48: 102644, 2023 02.
Article in English | MEDLINE | ID: mdl-36549555

ABSTRACT

Porous polymer microspheres are employed in biotherapeutics, tissue engineering, and regenerative medicine. Porosity dictates cargo carriage and release that are aligned with the polymer physicochemical properties. These include material tuning, biodegradation, and cargo encapsulation. How uniformity of pore size affects therapeutic delivery remains an area of active investigation. Herein, we characterize six branched aliphatic hydrocarbon-based porogen(s) produced to create pores in single and multilayered microspheres. The porogens are composed of biocompatible polycaprolactone, poly(lactic-co-glycolic acid), and polylactic acid polymers within porous multilayered microspheres. These serve as controlled effective drug and vaccine delivery platforms.


Subject(s)
Drug Delivery Systems , Polymers , Porosity , Microspheres , Polymers/chemistry , Hydrocarbons , Particle Size
17.
Acta Biomater ; 158: 493-509, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36581007

ABSTRACT

Effective antigen delivery facilitates antiviral vaccine success defined by effective immune protective responses against viral exposures. To improve severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigen delivery, a controlled biodegradable, stable, biocompatible, and nontoxic polymeric microsphere system was developed for chemically inactivated viral proteins. SARS-CoV-2 proteins encapsulated in polymeric microspheres induced robust antiviral immunity. The viral antigen-loaded microsphere system can preclude the need for repeat administrations, highlighting its potential as an effective vaccine. STATEMENT OF SIGNIFICANCE: Successful SARS-CoV-2 vaccines were developed and quickly approved by the US Food and Drug Administration (FDA). However, each of the vaccines requires boosting as new variants arise. We posit that injectable biodegradable polymers represent a means for the sustained release of emerging viral antigens. The approach offers a means to reduce immunization frequency by predicting viral genomic variability. This strategy could lead to longer-lasting antiviral protective immunity. The current proof-of-concept multipolymer study for SARS-CoV-2 achieve these metrics.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2 , COVID-19 Vaccines , Microspheres , Antiviral Agents/pharmacology
18.
Clin Exp Immunol ; 211(2): 108-121, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36041453

ABSTRACT

While inflammation may not be the cause of disease, it is well known that it contributes to disease pathogenesis across a multitude of peripheral and central nervous system disorders. Chronic and overactive inflammation due to an effector T-cell-mediated aberrant immune response ultimately leads to tissue damage and neuronal cell death. To counteract peripheral and neuroinflammatory responses, research is being focused on regulatory T cell enhancement as a therapeutic target. Regulatory T cells are an immunosuppressive subpopulation of CD4+ T helper cells essential for maintaining immune homeostasis. The cells play pivotal roles in suppressing immune responses to maintain immune tolerance. In so doing, they control T cell proliferation and pro-inflammatory cytokine production curtailing autoimmunity and inflammation. For nervous system pathologies, Treg are known to affect the onset and tempo of neural injuries. To this end, we review recent findings supporting Treg's role in disease, as well as serving as a therapeutic agent in multiple sclerosis, myasthenia gravis, Guillain-Barre syndrome, Parkinson's and Alzheimer's diseases, and amyotrophic lateral sclerosis. An ever-broader role for Treg in the control of neurologic disease has been shown for traumatic brain injury, stroke, neurotrophic pain, epilepsy, and psychiatric disorders. To such ends, this review serves to examine the role played by Tregs in nervous system diseases with a focus on harnessing their functional therapeutic role(s).


Subject(s)
Multiple Sclerosis , T-Lymphocytes, Regulatory , Humans , Immune Tolerance , Inflammation/pathology
19.
Sci Adv ; 8(51): eade9582, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36563152

ABSTRACT

Treatment of chronic hepatitis B virus (HBV) requires lifelong daily therapy. However, suboptimal adherence to the existing daily therapy has led to the need for ultralong-acting antivirals. A lipophilic and hydrophobic ProTide was made by replacing the alanyl isopropyl ester present in tenofovir alafenamide (TAF) with a docosyl phenyl alanyl ester, now referred to as M1TFV. NM1TFV and nanoformulated TAF (NTAF) nanocrystals were formulated by high-pressure homogenization. A single intramuscular injection of NM1TFV, but not NTAF, delivered at a dose of TFV equivalents (168 milligrams per kilogram) demonstrated monthslong antiviral activities in both HBV-transgenic and human hepatocyte transplanted TK-NOG mice. The suppression of HBV DNA in blood was maintained for 3 months. Laboratory experiments on HBV-transfected HepG2.2.15 cells affirmed the animal results and the critical role of docosanol in the sustained NM1TFV antiviral responses. These results provide clear "proof of concept" toward an emerging therapeutic paradigm for the treatment and prevention of HBV infection.

20.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36558984

ABSTRACT

Children born to mothers, with or at risk, of human immunodeficiency virus type-1 (HIV-1) infection are on the rise due to affordable access of antiretroviral therapy (ART) to pregnant women or those of childbearing age. Each year, up to 1.3 million HIV-1-infected women on ART have given birth with recorded mother-to-child HIV-1 transmission rates of less than 1%. Despite this benefit, the outcomes of children exposed to antiretroviral drugs during pregnancy, especially pre- and post- natal neurodevelopment remain incompletely understood. This is due, in part, to the fact that pregnant women are underrepresented in clinical trials. This is underscored by any potential risks of neural tube defects (NTDs) linked, in measure, to periconceptional usage of dolutegravir (DTG). A potential association between DTG and NTDs was first described in Botswana in 2018. Incidence studies of neurodevelopmental outcomes associated with DTG, and other integrase strand transfer inhibitors (INSTIs) are limited as widespread use of INSTIs has begun only recently in pregnant women. Therefore, any associations between INSTI use during pregnancy, and neurodevelopmental abnormalities remain to be explored. Herein, United States Food and Drug Administration approved ARVs and their use during pregnancy are discussed. We provide updates on INSTI pharmacokinetics and adverse events during pregnancy together with underlying mechanisms which could affect fetal neurodevelopment. Overall, this review seeks to educate both clinical and basic scientists on potential consequences of INSTIs on fetal outcomes as a foundation for future scientific investigations.

SELECTION OF CITATIONS
SEARCH DETAIL
...