Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 258, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225272

ABSTRACT

There are epidemiological associations between obesity and type 2 diabetes, cardiovascular disease and Alzheimer's disease. The role of amyloid beta 42 (Aß42) in these diverse chronic diseases is obscure. Here we show that adipose tissue releases Aß42, which is increased from adipose tissue of male mice with obesity and is associated with higher plasma Aß42. Increasing circulating Aß42 levels in male mice without obesity has no effect on systemic glucose homeostasis but has obesity-like effects on the heart, including reduced cardiac glucose clearance and impaired cardiac function. The closely related Aß40 isoform does not have these same effects on the heart. Administration of an Aß-neutralising antibody prevents obesity-induced cardiac dysfunction and hypertrophy. Furthermore, Aß-neutralising antibody administration in established obesity prevents further deterioration of cardiac function. Multi-contrast transcriptomic analyses reveal that Aß42 impacts pathways of mitochondrial metabolism and exposure of cardiomyocytes to Aß42 inhibits mitochondrial complex I. These data reveal a role for systemic Aß42 in the development of cardiac disease in obesity and suggest that therapeutics designed for Alzheimer's disease could be effective in combating obesity-induced heart failure.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Male , Mice , Animals , Amyloid beta-Peptides , Diabetes Mellitus, Type 2/complications , Antibodies, Neutralizing , Obesity/complications , Glucose , Peptide Fragments
2.
J Clin Invest ; 134(3)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38060313

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is prevalent in the majority of individuals with obesity, but in a subset of these individuals, it progresses to nonalcoholic steatohepatitis (0NASH) and fibrosis. The mechanisms that prevent NASH and fibrosis in the majority of patients with NAFLD remain unclear. Here, we report that NAD(P)H oxidase 4 (NOX4) and nuclear factor erythroid 2-related factor 2 (NFE2L2) were elevated in hepatocytes early in disease progression to prevent NASH and fibrosis. Mitochondria-derived ROS activated NFE2L2 to induce the expression of NOX4, which in turn generated H2O2 to exacerbate the NFE2L2 antioxidant defense response. The deletion or inhibition of NOX4 in hepatocytes decreased ROS and attenuated antioxidant defense to promote mitochondrial oxidative stress, damage proteins and lipids, diminish insulin signaling, and promote cell death upon oxidant challenge. Hepatocyte NOX4 deletion in high-fat diet-fed obese mice, which otherwise develop steatosis, but not NASH, resulted in hepatic oxidative damage, inflammation, and T cell recruitment to drive NASH and fibrosis, whereas NOX4 overexpression tempered the development of NASH and fibrosis in mice fed a NASH-promoting diet. Thus, mitochondria- and NOX4-derived ROS function in concert to drive a NFE2L2 antioxidant defense response to attenuate oxidative liver damage and progression to NASH and fibrosis in obesity.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Antioxidants , Diet, High-Fat/adverse effects , Hepatocytes/metabolism , Hydrogen Peroxide/metabolism , Liver/metabolism , Liver Cirrhosis/pathology , Mice, Inbred C57BL , Mitochondria/genetics , Mitochondria/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Reactive Oxygen Species/metabolism
3.
Article in English | MEDLINE | ID: mdl-36542512

ABSTRACT

Exercise training can increase both mitochondrial content and mitochondrial respiration. Despite its popularity, high-intensity exercise can be accompanied by mild acidosis (also present in certain pathological states), which may limit exercise-induced adaptations to skeletal muscle mitochondria. The aim of this study was to determine if administration of ammonium chloride (0.05 g/kg) to Wistar rats before each individual exercise session (5 high-intensity exercise sessions per week for eight weeks) reduced training-induced increases in mitochondrial content (measured by citrate synthase activity and protein content of electron transport system complexes) and respiration (measured in permeabilised muscle fibres). In the soleus muscle, the exercise-training-induced increase in mitochondrial respiration was reduced in rats administered ammonium chloride compared to control animals, but mitochondrial content was not altered. These effects were not present in the white gastrocnemius muscle. In conclusion, ammonium chloride administration before each exercise session over eight weeks reduced improvements in mitochondrial respiration in the soleus muscle but did not alter mitochondrial content. This suggests that mild acidosis may impact training-induced improvements in the respiration of mitochondria in some muscles.

4.
Int J Mol Sci ; 23(5)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35269762

ABSTRACT

Autophagy is a key intracellular mechanism by which cells degrade old or dysfunctional proteins and organelles. In skeletal muscle, evidence suggests that exercise increases autophagosome content and autophagy flux. However, the exercise-induced response seems to differ between rodents and humans, and little is known about how different exercise prescription parameters may affect these results. The present study utilised skeletal muscle samples obtained from four different experimental studies using rats and humans. Here, we show that, following exercise, in the soleus muscle of Wistar rats, there is an increase in LC3B-I protein levels immediately after exercise (+109%), and a subsequent increase in LC3B-II protein levels 3 h into the recovery (+97%), despite no change in Map1lc3b mRNA levels. Conversely, in human skeletal muscle, there is an immediate exercise-induced decrease in LC3B-II protein levels (-24%), independent of whether exercise is performed below or above the maximal lactate steady state, which returns to baseline 3.5 h following recovery, while no change in LC3B-I protein levels or MAP1LC3B mRNA levels is observed. SQSTM1/p62 protein and mRNA levels did not change in either rats or humans following exercise. By employing an ex vivo autophagy flux assay previously used in rodents we demonstrate that the exercise-induced decrease in LC3B-II protein levels in humans does not reflect a decreased autophagy flux. Instead, effect size analyses suggest a modest-to-large increase in autophagy flux following exercise that lasts up to 24 h. Our findings suggest that exercise-induced changes in autophagosome content markers differ between rodents and humans, and that exercise-induced decreases in LC3B-II protein levels do not reflect autophagy flux level.


Subject(s)
Autophagy , Physical Conditioning, Animal , Animals , Autophagy/physiology , Biomarkers/metabolism , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar
5.
Acta Physiol (Oxf) ; 234(2): e13772, 2022 02.
Article in English | MEDLINE | ID: mdl-34985815

ABSTRACT

AIM: Assessments of mitochondrial respiration and mitochondrial content are common in skeletal muscle research and exercise science. However, many sources of technical and biological variation render these analyses susceptible to error. This study aimed to better quantify the reliability of different experimental designs and/or techniques so as to assist researchers to obtain more reliable data. METHODS: We examined the repeatability of maximal mitochondrial oxidative phosphorylation in permeabilized muscle fibres via high-resolution respirometry, and citrate synthase activity (a biomarker for mitochondrial content) in a microplate with spectrophotometery. RESULTS: For mitochondrial respiration using permeabilized skeletal muscle fibres, the variability was reduced using three chambers and removing outliers compared to two chambers (CV reduced from 12.7% to 11.0%), and the minimal change that can be detected with 10 participants reduced from 17% to 13% according to modelling. For citrate synthase activity, the within-plate CV (3.5%) increased when the assay was repeated after 4 hours (CV = 10.2%) and 4 weeks (CV = 30.5%). The readings were correlated, but significantly different after 4 hours and 4 weeks. CONCLUSION: This research provides evidence for important technical considerations when measuring mitochondrial respiration and content using citrate synthase activity as a biomarker. When assessing mitochondrial respiration in human skeletal muscle, the technical variability of high-resolution respirometry can be reduced by increasing technical repeats and excluding outliers, practices which are not currently common. When analysing citrate synthase activity, our results highlight the importance of analysing all samples from the same study at the same time.


Subject(s)
Mitochondria, Muscle , Muscle, Skeletal , Biomarkers/metabolism , Humans , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Oxygen Consumption/physiology , Reproducibility of Results , Respiration
6.
J Endocrinol ; 252(2): 91-105, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34783678

ABSTRACT

The aim of this study was to investigate the relationship between mitochondrial content and respiratory function and whole-body insulin resistance in high-fat diet (HFD) fed rats. Male Wistar rats were given either a chow diet or an HFD for 12 weeks. After 4 weeks of the dietary intervention, half of the rats in each group began 8 weeks of interval training. In vivo glucose and insulin tolerance were assessed. Mitochondrial respiratory function was assessed in permeabilised soleus and white gastrocnemius (WG) muscles. Mitochondrial content was determined by the measurement of citrate synthase (CS) activity and protein expression of components of the electron transport system (ETS). We found HFD rats had impaired glucose and insulin tolerance but increased mitochondrial respiratory function and increased protein expression of components of the ETS. This was accompanied by an increase in CS activity in WG. Exercise training improved glucose and insulin tolerance in the HFD rats. Mitochondrial respiratory function was increased with exercise training in the chow-fed animals in soleus muscle. This exercise effect was absent in the HFD animals. In conclusion, exercise training improved insulin resistance in HFD rats but without changes in mitochondrial respiratory function and content. The lack of an association between mitochondrial characteristics and whole-body insulin resistance was reinforced by the absence of strong correlations between these measures. Our results suggest that improvements in mitochondrial respiratory function and content are not responsible for improvements in whole-body insulin resistance in HFD rats.


Subject(s)
Insulin Resistance/physiology , Mitochondria, Muscle/physiology , Physical Conditioning, Animal/physiology , Animals , Cell Respiration/physiology , Diet, High-Fat , Glucose/metabolism , Insulin/metabolism , Male , Muscle, Skeletal/metabolism , Obesity/metabolism , Obesity/physiopathology , Rats , Rats, Wistar
7.
Physiol Rep ; 9(6): e14797, 2021 03.
Article in English | MEDLINE | ID: mdl-33769716

ABSTRACT

AIM: Exercise is able to increase both muscle protein synthesis and mitochondrial biogenesis. However, acidosis, which can occur in pathological states as well as during high-intensity exercise, can decrease mitochondrial function, whilst its impact on muscle protein synthesis is disputed. Thus, the aim of this study was to determine the effect of a mild physiological decrease in pH, by administration of ammonium chloride, on myofibrillar and mitochondrial protein synthesis, as well as associated molecular signaling events. METHODS: Male Wistar rats were given either a placebo or ammonium chloride prior to a short interval training session. Rats were killed before exercise, immediately after exercise, or 3 h after exercise. RESULTS: Myofibrillar (p = 0.036) fractional protein synthesis rates was increased immediately after exercise in the soleus muscle of the placebo group, but this effect was absent in the ammonium chloride group. However, in the gastrocnemius muscle NH4 Cl increased myofibrillar (p = 0.044) and mitochondrial protein synthesis (0 h after exercise p = 0.01; 3 h after exercise p = 0.003). This was accompanied by some small differences in protein phosphorylation and mRNA expression. CONCLUSION: This study found ammonium chloride administration immediately prior to a single session of exercise in rats had differing effects on mitochondrial and myofibrillar protein synthesis rates in soleus (type I) and gastrocnemius (type II) muscle in rats.


Subject(s)
Acidosis/metabolism , Ammonium Chloride/administration & dosage , Mitochondrial Proteins/biosynthesis , Muscle Proteins/biosynthesis , Myofibrils/metabolism , Physical Conditioning, Animal , Animals , Male , Mitochondria/drug effects , Mitochondria/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Myofibrils/drug effects , Rats, Wistar
8.
Mol Metab ; 43: 101110, 2021 01.
Article in English | MEDLINE | ID: mdl-33137489

ABSTRACT

OBJECTIVE: Sleep loss has emerged as a risk factor for the development of impaired glucose tolerance. The mechanisms underpinning this observation are unknown; however, both mitochondrial dysfunction and circadian misalignment have been proposed. Because exercise improves glucose tolerance and mitochondrial function, and alters circadian rhythms, we investigated whether exercise may counteract the effects induced by inadequate sleep. METHODS: To minimize between-group differences of baseline characteristics, 24 healthy young males were allocated into one of the three experimental groups: a Normal Sleep (NS) group (8 h time in bed (TIB) per night, for five nights), a Sleep Restriction (SR) group (4 h TIB per night, for five nights), and a Sleep Restriction and Exercise group (SR+EX) (4 h TIB per night, for five nights and three high-intensity interval exercise (HIIE) sessions). Glucose tolerance, mitochondrial respiratory function, sarcoplasmic protein synthesis (SarcPS), and diurnal measures of peripheral skin temperature were assessed pre- and post-intervention. RESULTS: We report that the SR group had reduced glucose tolerance post-intervention (mean change ± SD, P value, SR glucose AUC: 149 ± 115 A.U., P = 0.002), which was also associated with reductions in mitochondrial respiratory function (SR: -15.9 ± 12.4 pmol O2.s-1.mg-1, P = 0.001), a lower rate of SarcPS (FSR%/day SR: 1.11 ± 0.25%, P < 0.001), and reduced amplitude of diurnal rhythms. These effects were not observed when incorporating three sessions of HIIE during this period (SR+EX: glucose AUC 67 ± 57, P = 0.239, mitochondrial respiratory function: 0.6 ± 11.8 pmol O2.s-1.mg-1, P = 0.997, and SarcPS (FSR%/day): 1.77 ± 0.22%, P = 0.971). CONCLUSIONS: A five-night period of sleep restriction leads to reductions in mitochondrial respiratory function, SarcPS, and amplitude of skin temperature diurnal rhythms, with a concurrent reduction in glucose tolerance. We provide novel data demonstrating that these same detrimental effects are not observed when HIIE is performed during the period of sleep restriction. These data therefore provide evidence in support of the use of HIIE as an intervention to mitigate the detrimental physiological effects of sleep loss.


Subject(s)
Exercise Therapy/methods , Exercise/physiology , Sleep Deprivation/physiopathology , Adult , Blood Glucose/metabolism , Carbohydrate Metabolism/physiology , Circadian Rhythm/physiology , Glucose/metabolism , Glucose Tolerance Test , Healthy Volunteers , Humans , Male , Mitochondria/metabolism , Muscle Cells/metabolism , Protein Biosynthesis , Sarcomeres/metabolism , Sleep/physiology , Sleep Deprivation/metabolism
9.
Int J Mol Sci ; 21(18)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971810

ABSTRACT

As a major site of glucose uptake following a meal, skeletal muscle has an important role in whole-body glucose metabolism. Evidence in humans and animal models of insulin resistance and type 2 diabetes suggests that alterations in mitochondrial characteristics accompany the development of skeletal muscle insulin resistance. However, it is unclear whether changes in mitochondrial content, respiratory function, or substrate oxidation are central to the development of insulin resistance or occur in response to insulin resistance. Thus, this review will aim to evaluate the apparent conflicting information placing mitochondria as a key organelle in the development of insulin resistance in skeletal muscle.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Insulin Resistance , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Animals , Diabetes Mellitus, Type 2/pathology , Humans , Mitochondria, Muscle/pathology , Muscle, Skeletal/pathology
10.
J Endocrinol ; 246(3): 265-276, 2020 09.
Article in English | MEDLINE | ID: mdl-32698129

ABSTRACT

Protein kinase D (PKD) is emerging as an important kinase regulating energy balance and glucose metabolism; however, whether hepatic PKD activity can be targeted to regulate these processes is currently unclear. In this study, hepatic PKD activity was reduced using adeno-associated virus vectors to express a dominant-negative (DN) version of PKD1, which impairs the action of all three PKD isoforms. In chow-fed mice, hepatic DN PKD expression increased whole-body glucose oxidation, but had only mild effects on glucose and insulin tolerance and no effects on glucose homeostasis following fasting and refeeding. However, circulating VLDL cholesterol was reduced under these conditions and was associated with hepatic fatty acid accumulation, but not lipids involved in lipoprotein synthesis. The limited effects on glucose homeostasis in DN PKD mice was despite reduced expression of gluconeogenic genes under both fasted and refed conditions, and enhanced pyruvate tolerance. The requirement for PKD for gluconeogenic capacity was supported by in vitro studies in cultured FAO hepatoma cells expressing DN PKD, which produced less glucose under basal conditions. Although these pathways are increased in obesity, the expression of DN PKD in the liver of mice fed a high-fat diet had no impact on glucose tolerance, insulin action, pyruvate tolerance or plasma VLDL. Together, these data suggest that PKD signalling in the liver regulates metabolic pathways involved in substrate redistribution under conditions of normal nutrient availability, but not under conditions of overnutrition such as in obesity.


Subject(s)
Cholesterol, VLDL/blood , Liver/enzymology , Protein Kinase C/metabolism , Animals , Blood Glucose/metabolism , Diet, High-Fat , Male , Mice , Obesity/blood , Obesity/enzymology , Signal Transduction/physiology , Triglycerides/blood
11.
Am J Physiol Cell Physiol ; 316(3): C404-C414, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30649921

ABSTRACT

Exercise stimulates mitochondrial biogenesis and increases mitochondrial respiratory function and content. However, during high-intensity exercise muscle pH can decrease below pH 6.8 with a concomitant increase in lactate concentration. This drop in muscle pH is associated with reduced exercise-induced mitochondrial biogenesis, while increased lactate may act as a signaling molecule to affect mitochondrial biogenesis. Therefore, in this study we wished to determine the impact of altering pH and lactate concentration in L6 myotubes on genes and proteins known to be involved in mitochondrial biogenesis. We also examined mitochondrial respiration in response to these perturbations. Differentiated L6 myotubes were exposed to normal (pH 7.5)-, low (pH 7.0)-, or high (pH 8.0)-pH media with and without 20 mM sodium l-lactate for 1 and 6 h. Low pH and 20 mM sodium l-lactate resulted in decreased Akt (Ser473) and AMPK (T172) phosphorylation at 1 h compared with controls, while at 6 h the nuclear localization of histone deacetylase 5 (HDAC5) was decreased. When the pH was increased both Akt (Ser473) and AMPK (T172) phosphorylation was increased at 1 h. Overall increased lactate decreased the nuclear content of HDAC5 at 6 h. Exposure to both high- and low-pH media decreased basal mitochondrial respiration, ATP turnover, and maximum mitochondrial respiratory capacity. These data indicate that muscle pH affects several metabolic signaling pathways, including those required for mitochondrial function.


Subject(s)
Histone Deacetylases/metabolism , Mitochondria/metabolism , Muscle Cells/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Respiration/physiology , Cells, Cultured , Exercise/physiology , Humans , Hydrogen-Ion Concentration , Mitochondria, Muscle/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Organelle Biogenesis , Phosphorylation/physiology , Signal Transduction/physiology
12.
Physiology (Bethesda) ; 34(1): 56-70, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30540234

ABSTRACT

It is well established that different types of exercise can provide a powerful stimulus for mitochondrial biogenesis. However, there are conflicting findings in the literature, and a consensus has not been reached regarding the efficacy of high-intensity exercise to promote mitochondrial biogenesis in humans. The purpose of this review is to examine current controversies in the field and to highlight some important methodological issues that need to be addressed to resolve existing conflicts.


Subject(s)
Exercise/physiology , Mitochondria/physiology , Physical Conditioning, Animal/physiology , Animals , Humans , Organelle Biogenesis , Research
13.
PLoS One ; 13(5): e0196438, 2018.
Article in English | MEDLINE | ID: mdl-29746477

ABSTRACT

Gene expression analysis by quantitative PCR in skeletal muscle is routine in exercise studies. The reproducibility and reliability of the data fundamentally depend on how the experiments are performed and interpreted. Despite the popularity of the assay, there is a considerable variation in experimental protocols and data analyses from different laboratories, and there is a lack of consistency of proper quality control steps throughout the assay. In this study, we present a number of experiments on various steps of quantitative PCR workflow, and demonstrate how to perform a quantitative PCR experiment with human skeletal muscle samples in an exercise study. We also tested some common mistakes in performing qPCR. Interestingly, we found that mishandling of muscle for a short time span (10 mins) before RNA extraction did not affect RNA quality, and isolated total RNA was preserved for up to one week at room temperature. Demonstrated by our data, use of unstable reference genes lead to substantial differences in the final results. Alternatively, cDNA content can be used for data normalisation; however, complete removal of RNA from cDNA samples is essential for obtaining accurate cDNA content.


Subject(s)
Exercise/physiology , Gene Expression Profiling/methods , Real-Time Polymerase Chain Reaction/methods , DNA, Complementary/genetics , Gene Expression/genetics , Humans , Muscle, Skeletal/metabolism , Quality Control , RNA/isolation & purification , RNA/metabolism , Reproducibility of Results , Research , Transcriptome/genetics
14.
J Endocrinol ; 237(3): 311-322, 2018 06.
Article in English | MEDLINE | ID: mdl-29674342

ABSTRACT

The amyloid precursor protein (APP) generates a number of peptides when processed through different cleavage mechanisms, including the amyloid beta peptide that is implicated in the development of Alzheimer's disease. It is well established that APP via its cleaved peptides regulates aspects of neuronal metabolism. Emerging evidence suggests that amyloidogenic processing of APP can lead to altered systemic metabolism, similar to that observed in metabolic disease states. In the present study, we investigated the effect of APP deficiency on obesity-induced alterations in systemic metabolism. Compared with WT littermates, APP-deficient mice were resistant to diet-induced obesity, which was linked to higher energy expenditure and lipid oxidation throughout the dark phase and was associated with increased spontaneous physical activity. Consistent with this lean phenotype, APP-deficient mice fed a high-fat diet (HFD) had normal insulin tolerance. However, despite normal insulin action, these mice were glucose intolerant, similar to WT mice fed a HFD. This was associated with reduced plasma insulin in the early phase of the glucose tolerance test. Analysis of the pancreas showed that APP was required to maintain normal islet and ß-cell mass under high fat feeding conditions. These studies show that, in addition to regulating aspects of neuronal metabolism, APP is an important regulator of whole body energy expenditure and glucose homeostasis under high fat feeding conditions.


Subject(s)
Amyloid beta-Peptides/genetics , Diet, High-Fat/adverse effects , Glucose Intolerance/genetics , Obesity/genetics , Animals , Body Weight/genetics , Carbohydrate Metabolism/genetics , Energy Metabolism/genetics , Female , Glucose/metabolism , Glucose Intolerance/metabolism , Glucose Tolerance Test , Insulin Resistance/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism
15.
PLoS Genet ; 12(5): e1006033, 2016 05.
Article in English | MEDLINE | ID: mdl-27195491

ABSTRACT

Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic ß-cell dysfunction. Reduced mitochondrial function is thought to be central to ß-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in ß-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D ß-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D ß-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their ß-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of ß-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D ß-cells where we had little knowledge of which changes cause ß-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to ß-cell mitochondrial dysfunction in T2D.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Down Syndrome/genetics , Insulin/genetics , Intracellular Signaling Peptides and Proteins/genetics , Muscle Proteins/genetics , Adenosine Triphosphate/metabolism , Aneuploidy , Animals , Calcium-Binding Proteins , Chromosomes, Human, Pair 21/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Down Syndrome/metabolism , Down Syndrome/pathology , Gene Expression Regulation , Glucose/metabolism , Humans , Hyperglycemia/genetics , Hyperglycemia/metabolism , Hyperglycemia/pathology , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mitochondria/genetics , Mitochondria/pathology , Muscle Proteins/metabolism , Protein Biosynthesis/genetics
16.
Diabetes ; 65(4): 1085-98, 2016 04.
Article in English | MEDLINE | ID: mdl-26822084

ABSTRACT

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein with dual roles in redox signaling and programmed cell death. Deficiency in AIF is known to result in defective oxidative phosphorylation (OXPHOS), via loss of complex I activity and assembly in other tissues. Because the kidney relies on OXPHOS for metabolic homeostasis, we hypothesized that a decrease in AIF would result in chronic kidney disease (CKD). Here, we report that partial knockdown of Aif in mice recapitulates many features of CKD, in association with a compensatory increase in the mitochondrial ATP pool via a shift toward mitochondrial fusion, excess mitochondrial reactive oxygen species production, and Nox4 upregulation. However, despite a 50% lower AIF protein content in the kidney cortex, there was no loss of complex I activity or assembly. When diabetes was superimposed onto Aif knockdown, there were extensive changes in mitochondrial function and networking, which augmented the renal lesion. Studies in patients with diabetic nephropathy showed a decrease in AIF within the renal tubular compartment and lower AIFM1 renal cortical gene expression, which correlated with declining glomerular filtration rate. Lentiviral overexpression of Aif1m rescued glucose-induced disruption of mitochondrial respiration in human primary proximal tubule cells. These studies demonstrate that AIF deficiency is a risk factor for the development of diabetic kidney disease.


Subject(s)
Apoptosis Inducing Factor/genetics , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/genetics , Mitochondria/metabolism , Renal Insufficiency, Chronic/genetics , Animals , Cell Respiration/genetics , Cells, Cultured , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Genetic Predisposition to Disease , Homeostasis/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Oxidative Phosphorylation , Renal Insufficiency, Chronic/metabolism , Risk Factors
17.
Cardiovasc Diabetol ; 14: 91, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26194188

ABSTRACT

BACKGROUND: Insulin-induced microvascular recruitment is important for optimal muscle glucose uptake. 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR, an activator of AMP-activated protein kinase), can also induce microvascular recruitment, at doses that do not acutely activate glucose transport in rat muscle. Whether low doses of AICAR can augment physiologic insulin action is unknown. In the present study we used the euglycemic hyperinsulinemic clamp to assess whether insulin action is augmented by low dose AICAR. METHODS: Anesthetized rats were studied during saline infusion or euglycemic insulin (3 mU/kg/min) clamp for 2 h in the absence or presence of AICAR for the last hour (5 mg bolus followed by 3.75 mg/kg/min). Muscle glucose uptake (R'g) was determined radioisotopically with (14)C-2-deoxyglucose and muscle microvascular perfusion by contrast-enhanced ultrasound with microbubbles. RESULTS: AICAR did not affect blood glucose, or lower leg R'g, although it significantly (p < 0.05) increased blood lactate levels and augmented muscle microvascular blood volume via a nitric oxide synthase dependent pathway. Insulin increased femoral blood flow, whole body glucose infusion rate (GIR), R'g, hindleg glucose uptake, and microvascular blood volume. Addition of AICAR during insulin infusion increased lactate production, further increased R'g in Type IIA (fast twitch oxidative) and IIB (fast twitch glycolytic) fiber containing muscles, and hindleg glucose uptake, but decreased R'g in the Type I (slow twitch oxidative) fiber muscle. AICAR also decreased GIR due to inhibition of insulin-mediated suppression of hepatic glucose output. AICAR augmented insulin-mediated microvascular perfusion. CONCLUSIONS: AICAR, at levels that have no direct effect on muscle glucose uptake, augments insulin-mediated microvascular blood flow and glucose uptake in white fiber type muscles. Agents targeted to endothelial AMPK activation are promising insulin sensitizers, however, the decrease in GIR and the propensity to increase blood lactate cautions against AICAR as an acute insulin sensitizer.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Deoxyglucose/metabolism , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Microcirculation/drug effects , Microvessels/drug effects , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Ribonucleotides/pharmacology , Aminoimidazole Carboxamide/pharmacology , Animals , Blood Flow Velocity , Contrast Media , Femoral Artery/drug effects , Femoral Artery/physiology , Glucose Clamp Technique , Hindlimb , Lactic Acid/blood , Male , Microbubbles , Microvessels/diagnostic imaging , Microvessels/physiology , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/drug effects , Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/metabolism , Nitric Oxide Synthase/metabolism , Rats, Wistar , Regional Blood Flow , Time Factors , Ultrasonography
18.
Cell Metab ; 21(5): 718-30, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25955207

ABSTRACT

Accumulation of diacylglycerol (DG) in muscle is thought to cause insulin resistance. DG is a precursor for phospholipids, thus phospholipid synthesis could be involved in regulating muscle DG. Little is known about the interaction between phospholipid and DG in muscle; therefore, we examined whether disrupting muscle phospholipid synthesis, specifically phosphatidylethanolamine (PtdEtn), would influence muscle DG content and insulin sensitivity. Muscle PtdEtn synthesis was disrupted by deleting CTP:phosphoethanolamine cytidylyltransferase (ECT), the rate-limiting enzyme in the CDP-ethanolamine pathway, a major route for PtdEtn production. While PtdEtn was reduced in muscle-specific ECT knockout mice, intramyocellular and membrane-associated DG was markedly increased. Importantly, however, this was not associated with insulin resistance. Unexpectedly, mitochondrial biogenesis and muscle oxidative capacity were increased in muscle-specific ECT knockout mice and were accompanied by enhanced exercise performance. These findings highlight the importance of the CDP-ethanolamine pathway in regulating muscle DG content and challenge the DG-induced insulin resistance hypothesis.


Subject(s)
Cytidine Diphosphate/analogs & derivatives , Diglycerides/metabolism , Ethanolamines/metabolism , Insulin Resistance , Muscle, Skeletal/metabolism , Organelle Biogenesis , Animals , Cytidine Diphosphate/metabolism , Glucose/metabolism , Lipid Metabolism , Mice , Mice, Knockout , Obesity/genetics , Obesity/metabolism , RNA Nucleotidyltransferases/genetics , RNA Nucleotidyltransferases/metabolism
19.
Microcirculation ; 20(5): 434-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23350546

ABSTRACT

OBJECTIVE: We examined insulins uptake and transendothelial transport by endothelial cells in order to: (i) ascertain whether insulin accumulates within the cells to concentrations greater than in the media; (ii) compare trans endothelial insulin transport to that of inulin (using the latter as a tracer for passive transport or leaked); and; (iii) determine whether insulins transported depended on insulin action. METHODS: Using 125I-insulin at physiologic concentrations we measured both the uptake and trans endothelial transport of insulin by bovine aortic endothelial cells and measured cell volume using tritiated 3-O-methylglucose. RESULTS: Bovine aortic endothelial cells accumulate insulin to > five-fold above the media concentrations and the trans endothelial transport of insulin, but not inulin, is saturable and requires intact PI-3-kinase and MEK signaling. CONCLUSION: The insulin receptor and downstream signaling from the receptor regulates endothelial insulin transport. Insulin is accumulated against a concentration gradient by the endothelial cell. We suggest that insulin uptake is rate limiting for insulin trans endothelial transport.


Subject(s)
Endothelial Cells/metabolism , Insulin/metabolism , Animals , Cattle , Cell Size , Cells, Cultured , Endothelial Cells/cytology , Insulin/pharmacology , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Transport/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...