Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 8(1): 8933, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29895865

ABSTRACT

Tendons are ineffective at repairing sub-rupture fatigue injuries. Accordingly, we evaluated whether an exercise protocol that we have previously found to decrease structural damage kinks in fatigue damaged tendons, leads to improvement in mechanical properties. We hypothesized that exercise that promotes repair of fatigue damage will decrease apoptosis and increase the population of myofibroblasts. Rat patellar tendons underwent in vivo fatigue loading for 500 or 7200 cycles. Animals resumed cage activity for 2-weeks, then either remained cage active or began treadmill running until sacrifice at 4- or 10-weeks post-fatigue loading. Exercise following fatigue damage increased the stiffness back towards naïve levels, decreased apoptosis and increased the population of myofibroblasts. Next, proteins associated with inhibition of apoptosis (Collagen VI) or activation of myofibroblast (pSmad 2/3, fibrillin, integrin subunits αV and α5) were evaluated. Data suggests that collagen VI may not be integral to inhibition of apoptosis in this context. Exercise increased pSmad 2/3 and fibrillin in the insertion region for the 7200-cycles group. In addition, exercise decreased integrin αV and increased integrin α5 in fatigue damaged tendons. Data suggests that a decrease in apoptosis and an increase in population of myofibroblasts may be integral to remodeling of fatigue damaged tendons.


Subject(s)
Fatigue/physiopathology , Myofibroblasts/physiology , Patellar Ligament/physiopathology , Physical Conditioning, Animal/physiology , Tendon Injuries/physiopathology , Animals , Apoptosis/physiology , Collagen/metabolism , Fatigue/etiology , Fatigue/metabolism , Female , Fibrillins/metabolism , Integrins/metabolism , Myofibroblasts/metabolism , Patellar Ligament/injuries , Patellar Ligament/metabolism , Rats, Sprague-Dawley , Rupture/complications , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Stress, Mechanical , Tendon Injuries/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...