Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hematol Oncol ; 16(1): 23, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36932441

ABSTRACT

BACKGROUND: The immunological composition of the tumor microenvironment has a decisive influence on the biological course of cancer and is therefore of profound clinical relevance. In this study, we analyzed the cooperative effects of integrin ß4 (ITGB4) on tumor cells and E-/P-selectin on endothelial cells within the tumor stroma for regulating tumor growth by shaping the local and systemic immune environment. METHODS: We used several preclinical mouse models for different solid human cancer types (xenograft and syngeneic) to explore the role of ITGB4 (shRNA-mediated knockdown in tumor cells) and E-/P-selectins (knockout in mice) for tumor growth; effects on apoptosis, proliferation and intratumoral signaling pathways were determined by histological and biochemical methods and 3D in vitro experiments; changes in the intratumoral and systemic immune cell composition were determined by flow cytometry and immunohistochemistry; chemokine levels and their attracting potential were measured by ELISA and 3D invasion assays. RESULTS: We observed a very robust synergism between ITGB4 and E-/P-selectin for the regulation of tumor growth, accompanied by an increased recruitment of CD11b+ Gr-1Hi cells with low granularity (i.e., myeloid-derived suppressor cells, MDSCs) specifically into ITGB4-depleted tumors. ITGB4-depleted tumors undergo apoptosis and actively attract MDSCs, well-known to promote tumor growth in several cancers, via increased secretion of different chemokines. MDSC trafficking into tumors crucially depends on E-/P-selectin expression. Analyses of clinical samples confirmed an inverse relationship between ITGB4 expression in tumors and number of tumor-infiltrating leukocytes. CONCLUSIONS: These findings suggest a distinct vulnerability of ITGB4Lo tumors for MDSC-directed immunotherapies.


Subject(s)
Integrin beta4 , Myeloid-Derived Suppressor Cells , Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Chemokines , Endothelial Cells/metabolism , Integrin beta4/metabolism , P-Selectin , Tumor Microenvironment
2.
Mol Cancer ; 21(1): 178, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36076232

ABSTRACT

BACKGROUND: Epidermal growth factor receptor (EGFR) is both a driver oncogene and a therapeutic target in advanced head and neck squamous cell carcinoma (HNSCC). However, response to EGFR treatment is inconsistent and lacks markers for treatment prediction. This study investigated EGFR-induced epithelial-to-mesenchymal transition (EMT) as a central parameter in tumor progression and identified novel prognostic and therapeutic targets, and a candidate predictive marker for EGFR therapy response. METHODS: Transcriptomic profiles were analyzed by RNA sequencing (RNA-seq) following EGFR-mediated EMT in responsive human HNSCC cell lines. Exclusive genes were extracted via differentially expressed genes (DEGs) and a risk score was determined through forward feature selection and Cox regression models in HNSCC cohorts. Functional characterization of selected prognostic genes was conducted in 2D and 3D cellular models, and findings were validated by immunohistochemistry in primary HNSCC. RESULTS: An EGFR-mediated EMT gene signature composed of n = 171 genes was identified in responsive cell lines and transferred to the TCGA-HNSCC cohort. A 5-gene risk score comprising DDIT4, FADD, ITGB4, NCEH1, and TIMP1 prognosticated overall survival (OS) in TCGA and was confirmed in independent HNSCC cohorts. The EGFR-mediated EMT signature was distinct from EMT hallmark and partial EMT (pEMT) meta-programs with a differing enrichment pattern in single malignant cells. Molecular characterization showed that ITGB4 was upregulated in primary tumors and metastases compared to normal mucosa and correlated with EGFR/MAPK activity in tumor bulk and single malignant cells. Preferential localization of ITGB4 together with its ligand laminin 5 at tumor-stroma interfaces correlated with increased tumor budding in primary HNSCC tissue sections. In vitro, ITGB4 knock-down reduced EGFR-mediated migration and invasion and ITGB4-antagonizing antibody ASC8 impaired 2D and 3D invasion. Furthermore, a logistic regression model defined ITGB4 as a predictive marker of progression-free survival in response to Cetuximab in recurrent metastatic HNSCC patients. CONCLUSIONS: EGFR-mediated EMT conveyed through MAPK activation contributes to HNSCC progression upon induction of migration and invasion. A 5-gene risk score based on a novel EGFR-mediated EMT signature prognosticated survival of HNSCC patients and determined ITGB4 as potential therapeutic and predictive target in patients with strong EGFR-mediated EMT.


Subject(s)
Head and Neck Neoplasms , Transcriptome , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Humans , Neoplasm Recurrence, Local/genetics , Prognosis , Squamous Cell Carcinoma of Head and Neck/genetics
3.
Mol Ther ; 30(4): 1536-1552, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35031433

ABSTRACT

Extravasation of circulating tumor cells (CTCs) is critical for metastasis and is initiated by adhesive interactions between glycoligands on CTCs and E-selectin on endothelia. Here, we show that the clinically approved proteasome inhibitor bortezomib (BZM; Velcade) counteracts the cytokine-dependent induction of E-selectin in the lung mediated by the primary tumor, thereby impairing endothelial adhesion and thus spontaneous lung metastasis in vivo. However, the efficacy of BZM crucially depends on the tumor cells' E-selectin ligands, which determine distinct adhesion patterns. The canonical ligands sialyl-Lewis A (sLeA) and sLeX mediate particularly high-affinity E-selectin binding so that the incomplete E-selectin-reducing effect of BZM is not sufficient to disrupt adhesion or metastasis. In contrast, tumor cells lacking sLeA/X nevertheless bind E-selectin, but with low affinity, so that adhesion and lung metastasis are significantly diminished. Such low-affinity E-selectin ligands apparently consist of sialylated MGAT5 products on CD44. BZM no longer has anti-metastatic activity after CD44 knockdown in sLeA/X-negative tumor cells or E-selectin knockout in mice. sLeA/X can be determined by immunohistochemistry in cancer samples, which might aid patient stratification. These data suggest that BZM might act as a drug for inhibiting extravasation and thus distant metastasis formation in malignancies expressing low-affinity E-selectin ligands.


Subject(s)
E-Selectin , Lung Neoplasms , Animals , Bortezomib/pharmacology , CA-19-9 Antigen/pharmacology , Cell Adhesion , E-Selectin/genetics , E-Selectin/metabolism , Humans , Ligands , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice , Neoplasm Metastasis , Oligosaccharides , Sialyl Lewis X Antigen
4.
Biochimie ; 192: 91-101, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34637894

ABSTRACT

In this study we analyzed expression of CD24 in a cohort of colorectal cancer patients using immunohistochemistry staining of CD24. We found a significant association between absence or low expression of CD24 (10% of membranous and 55% of cytoplasmic staining) and shortened patient survival. Protein localization played a crucial role in the prognosis: membranous form was the major and prognostic one in primary tumors, while cytoplasmic expression was elevated in liver metastases compared to the primary tumors and contained prognostic information. Then, using The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) RNA-seq data, we showed that CD24 mRNA level was two-fold decreased in primary colorectal cancers compared to adjacent normal mucosa. Like the protein staining data, ten percent of patients with the lowest mRNA expression levels of CD24 in primary tumors had reduced survival compared to the ones with higher expression. To explain these findings mechanistically, shRNA-mediated CD24 knockdown was performed in HT-29 colorectal cancer cells. It resulted in the increase of cell migration in vitro, no changes in proliferation and apoptosis, and a slight decrease in cell invasion. As increased cell migration is a hallmark of metastasis formation, this finding corroborates the association of a decreased CD24 expression with poor prognosis. Differential gene expression analysis revealed upregulation of genes involved in cell migration in the group of patients with low CD24 expression, including integrin subunit α3 and α3, ß3 subunits of laminin 332. Further co-expression analysis identified SPI1, STAT1 and IRF1 transcription factors as putative master-regulators in this group.


Subject(s)
CD24 Antigen , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Neoplasm Proteins , Aged , CD24 Antigen/biosynthesis , CD24 Antigen/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , Disease-Free Survival , Female , HT29 Cells , Humans , Male , Middle Aged , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...