Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Biomed Pharmacother ; 175: 116725, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38744219

ABSTRACT

Qualitative alterations in type I collagen due to pathogenic variants in the COL1A1 or COL1A2 genes, result in moderate and severe Osteogenesis Imperfecta (OI), a rare disease characterized by bone fragility. The TGF-ß signaling pathway is overactive in OI patients and certain OI mouse models, and inhibition of TGF-ß through anti-TGF-ß monoclonal antibody therapy in phase I clinical trials in OI adults is rendering encouraging results. However, the impact of TGF-ß inhibition on osteogenic differentiation of mesenchymal stem cells from OI patients (OI-MSCs) is unknown. The following study demonstrates that pediatric skeletal OI-MSCs have imbalanced osteogenesis favoring the osteogenic commitment. Galunisertib, a small molecule inhibitor (SMI) that targets the TGF-ß receptor I (TßRI), favored the final osteogenic maturation of OI-MSCs. Mechanistically, galunisertib downregulated type I collagen expression in OI-MSCs, with greater impact on mutant type I collagen, and concomitantly, modulated the expression of unfolded protein response (UPR) and autophagy markers. In vivo, galunisertib improved trabecular bone parameters only in female oim/oim mice. These results further suggest that type I collagen is a tunable target within the bone ECM that deserves investigation and that the SMI, galunisertib, is a promising new candidate for the anti-TGF-ß targeting for the treatment of OI.

2.
Cell Tissue Res ; 396(2): 255-267, 2024 May.
Article in English | MEDLINE | ID: mdl-38502237

ABSTRACT

Joubert syndrome (JS) is a recessively inherited congenital ataxia characterized by hypotonia, psychomotor delay, abnormal ocular movements, intellectual disability, and a peculiar cerebellar and brainstem malformation, the "molar tooth sign." Over 40 causative genes have been reported, all encoding for proteins implicated in the structure or functioning of the primary cilium, a subcellular organelle widely present in embryonic and adult tissues. In this paper, we developed an in vitro neuronal differentiation model using patient-derived induced pluripotent stem cells (iPSCs), to evaluate possible neurodevelopmental defects in JS. To this end, iPSCs from four JS patients harboring mutations in distinct JS genes (AHI1, CPLANE1, TMEM67, and CC2D2A) were differentiated alongside healthy control cells to obtain mid-hindbrain precursors and cerebellar granule cells. Differentiation was monitored over 31 days through the detection of lineage-specific marker expression by qRT-PCR, immunofluorescence, and transcriptomics analysis. All JS patient-derived iPSCs, regardless of the mutant gene, showed a similar impairment to differentiate into mid-hindbrain and cerebellar granule cells when compared to healthy controls. In addition, analysis of primary cilium count and morphology showed notable ciliary defects in all differentiating JS patient-derived iPSCs compared to controls. These results confirm that patient-derived iPSCs are an accessible and relevant in vitro model to analyze cellular phenotypes connected to the presence of JS gene mutations in a neuronal context.


Subject(s)
Abnormalities, Multiple , Cell Differentiation , Cerebellum , Cerebellum/abnormalities , Eye Abnormalities , Induced Pluripotent Stem Cells , Kidney Diseases, Cystic , Neurons , Retina , Retina/abnormalities , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Cerebellum/pathology , Cerebellum/metabolism , Neurons/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Retina/metabolism , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Kidney Diseases, Cystic/metabolism , Male , Female , Mutation/genetics , Cilia/metabolism
3.
Transl Pediatr ; 12(9): 1715-1724, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37814722

ABSTRACT

Desmoid tumor (DT) is a fibroblastic proliferation arising in soft tissue characterized by localized infiltrative growth with an inability to metastasize but with a tendency to recurrence. Nuchal-type fibromas are benign soft tissue lesions that are usually developed in the posterior neck. The development of these neoplasms can be associated with a hereditary cancer predisposition syndrome, mainly familial adenomatous polyposis (FAP) syndrome caused by APC germline mutations. Gardner syndrome is a variant of FAP characterized by the presence of extracolonic manifestations including soft tissue tumors as DTs and nuchal-type fibromas. However, the development of these tumors could be associated with germline alterations in other genes related to colorectal cancer development. The objective of this study was to analyze germline variants in APC, MUTYH, POLD1 and POLE genes in five pediatric patients diagnosed with DTs or nuchal-type fibromas. We identified two pathogenic variants in the APC gene in two different patients diagnosed with nuchal-type fibroma and DTs and two variants of uncertain significance in POLD1 in two patients diagnosed with nuchal-type fibroma. Two patients had family history of colorectal cancer, however, only one of them showed an APC germline pathogenic variant. The analysis of germline variants and genetic counseling is essential for pediatric patients diagnosed with DTs or nuchal-type fibromas and their relatives.

4.
Genet Med ; 24(12): 2475-2486, 2022 12.
Article in English | MEDLINE | ID: mdl-36197437

ABSTRACT

PURPOSE: We aimed to investigate the molecular basis of a novel recognizable neurodevelopmental syndrome with scalp and enamel anomalies caused by truncating variants in the last exon of the gene FOSL2, encoding a subunit of the AP-1 complex. METHODS: Exome sequencing was used to identify genetic variants in all cases, recruited through Matchmaker exchange. Gene expression in blood was analyzed using reverse transcription polymerase chain reaction. In vitro coimmunoprecipitation and proteasome inhibition assays in transfected HEK293 cells were performed to explore protein and AP-1 complex stability. RESULTS: We identified 11 individuals from 10 families with mostly de novo truncating FOSL2 variants sharing a strikingly similar phenotype characterized by prenatal growth retardation, localized cutis scalp aplasia with or without skull defects, neurodevelopmental delay with autism spectrum disorder, enamel hypoplasia, and congenital cataracts. Mutant FOSL2 messenger RNAs escaped nonsense-mediated messenger RNA decay. Truncated FOSL2 interacts with c-JUN, thus mutated AP-1 complexes could be formed. CONCLUSION: Truncating variants in the last exon of FOSL2 associate a distinct clinical phenotype by altering the regulatory degradation of the AP-1 complex. These findings reveal a new role for FOSL2 in human pathology.


Subject(s)
Autism Spectrum Disorder , Ectodermal Dysplasia , Neurodevelopmental Disorders , Humans , Scalp/abnormalities , Scalp/metabolism , Autism Spectrum Disorder/genetics , HEK293 Cells , Transcription Factor AP-1/genetics , Exons/genetics , Ectodermal Dysplasia/genetics , Neurodevelopmental Disorders/genetics , RNA, Messenger , Fos-Related Antigen-2/genetics
5.
Front Genet ; 13: 652454, 2022.
Article in English | MEDLINE | ID: mdl-35495150

ABSTRACT

Phelan-McDermid syndrome (PMS, OMIM# 606232) results from either different rearrangements at the distal region of the long arm of chromosome 22 (22q13.3) or pathogenic sequence variants in the SHANK3 gene. SHANK3 codes for a structural protein that plays a central role in the formation of the postsynaptic terminals and the maintenance of synaptic structures. Clinically, patients with PMS often present with global developmental delay, absent or severely delayed speech, neonatal hypotonia, minor dysmorphic features, and autism spectrum disorders (ASD), among other findings. Here, we describe a cohort of 210 patients with genetically confirmed PMS. We observed multiple variant types, including a significant number of small deletions (<0.5 Mb, 64/189) and SHANK3 sequence variants (21 cases). We also detected multiple types of rearrangements among microdeletion cases, including a significant number with post-zygotic mosaicism (9.0%, 17/189), ring chromosome 22 (10.6%, 20/189), unbalanced translocations (de novo or inherited, 6.4%), and additional rearrangements at 22q13 (6.3%, 12/189) as well as other copy number variations in other chromosomes, unrelated to 22q deletions (14.8%, 28/189). We compared the clinical and genetic characteristics among patients with different sizes of deletions and with SHANK3 variants. Our findings suggest that SHANK3 plays an important role in this syndrome but is probably not uniquely responsible for all the spectrum features in PMS. We emphasize that only an adequate combination of different molecular and cytogenetic approaches allows an accurate genetic diagnosis in PMS patients. Thus, a diagnostic algorithm is proposed.

6.
Epilepsia ; 63(4): 974-991, 2022 04.
Article in English | MEDLINE | ID: mdl-35179230

ABSTRACT

OBJECTIVE: Epilepsy is common in patients with PIGN diseases due to biallelic variants; however, limited epilepsy phenotyping data have been reported. We describe the epileptology of PIGN encephalopathy. METHODS: We recruited patients with epilepsy due to biallelic PIGN variants and obtained clinical data regarding age at seizure onset/offset and semiology, development, medical history, examination, electroencephalogram, neuroimaging, and treatment. Seizure and epilepsy types were classified. RESULTS: Twenty six patients (13 female) from 26 families were identified, with mean age 7 years (range = 1 month to 21 years; three deceased). Abnormal development at seizure onset was present in 25 of 26. Developmental outcome was most frequently profound (14/26) or severe (11/26). Patients presented with focal motor (12/26), unknown onset motor (5/26), focal impaired awareness (1/26), absence (2/26), myoclonic (2/26), myoclonic-atonic (1/26), and generalized tonic-clonic (2/26) seizures. Twenty of 26 were classified as developmental and epileptic encephalopathy (DEE): 55% (11/20) focal DEE, 30% (6/20) generalized DEE, and 15% (3/20) combined DEE. Six had intellectual disability and epilepsy (ID+E): two generalized and four focal epilepsy. Mean age at seizure onset was 13 months (birth to 10 years), with a lower mean onset in DEE (7 months) compared with ID+E (33 months). Patients with DEE had drug-resistant epilepsy, compared to 4/6 ID+E patients, who were seizure-free. Hyperkinetic movement disorder occurred in 13 of 26 patients. Twenty-seven of 34 variants were novel. Variants were truncating (n = 7), intronic and predicted to affect splicing (n = 7), and missense or inframe indels (n = 20, of which 11 were predicted to affect splicing). Seven variants were recurrent, including p.Leu311Trp in 10 unrelated patients, nine with generalized seizures, accounting for nine of the 11 patients in this cohort with generalized seizures. SIGNIFICANCE: PIGN encephalopathy is a complex autosomal recessive disorder associated with a wide spectrum of epilepsy phenotypes, typically with substantial profound to severe developmental impairment.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Intellectual Disability , Electroencephalography , Epilepsy/diagnostic imaging , Epilepsy/genetics , Female , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Phenotype , Seizures/genetics
7.
Front Cell Dev Biol ; 10: 830928, 2022.
Article in English | MEDLINE | ID: mdl-35223854

ABSTRACT

Osteogenesis Imperfecta (OI) is a rare genetic disease characterized by bone fragility, with a wide range in the severity of clinical manifestations. The majority of cases are due to mutations in COL1A1 or COL1A2, which encode type I collagen. There is no cure for OI, and real concerns exist for current therapeutic approaches, mainly antiresorptive drugs, regarding their effectiveness and security. Safer and effective therapeutic approaches are demanded. Cell therapy with mesenchymal stem cells (MSCs), osteoprogenitors capable of secreting type I collagen, has been tested to treat pediatric OI with encouraging outcomes. Another therapeutic approach currently under clinical development focuses on the inhibition of TGF-ß pathway, based on the excessive TGF-ß signaling found in the skeleton of severe OI mice models, and the fact that TGF-ß neutralizing antibody treatment rescued bone phenotypes in those OI murine models. An increased serum expression of TGF-ß superfamily members has been described for a number of bone pathologies, but still it has not been addressed in OI patients. To delve into this unexplored question, in the present study we investigated serum TGF-ß signalling pathway in two OI pediatric patients who participated in TERCELOI, a phase I clinical trial based on reiterative infusions of MSCs. We examined not only the expression and bioactivity of circulating TGF-ß pathway in TERCELOI patients, but also the effects that MSCs therapy could elicit. Strikingly, basal serum from the most severe patient showed an enhanced expression of several TGF-ß superfamily members and increased TGF-ß bioactivity, which were modulated after MSCs therapy.

8.
J Med Genet ; 59(5): 428-437, 2022 05.
Article in English | MEDLINE | ID: mdl-33782094

ABSTRACT

BACKGROUND: The paired-domain transcription factor paired box gene 6 (PAX6) causes a wide spectrum of ocular developmental anomalies, including congenital aniridia, Peters anomaly and microphthalmia. Here, we aimed to functionally assess the involvement of seven potentially non-canonical splicing variants on missplicing of exon 6, which represents the main hotspot region for loss-of-function PAX6 variants. METHODS: By locus-specific analysis of PAX6 using Sanger and/or targeted next-generation sequencing, we screened a Spanish cohort of 106 patients with PAX6-related diseases. Functional splicing assays were performed by in vitro minigene approaches or directly in RNA from patient-derived lymphocytes cell line, when available. RESULTS: Five out seven variants, including three synonymous changes, one small exonic deletion and one non-canonical splice variant, showed anomalous splicing patterns yielding partial exon skipping and/or elongation. CONCLUSION: We describe new spliceogenic mechanisms for PAX6 variants mediated by creating or strengthening five different cryptic donor sites at exon 6. Our work revealed that the activation of cryptic PAX6 splicing sites seems to be a recurrent and underestimated cause of aniridia. Our findings pointed out the importance of functional assessment of apparently silent PAX6 variants to uncover hidden genetic alterations and to improve variant interpretation for genetic counselling in aniridia.


Subject(s)
Aniridia , Eye Abnormalities , Aniridia/genetics , Eye Abnormalities/genetics , Eye Proteins/genetics , Homeodomain Proteins/genetics , Humans , Mutation/genetics , PAX6 Transcription Factor/genetics , Pedigree , RNA Splice Sites/genetics
9.
Clin Transl Med ; 11(1): e265, 2021 01.
Article in English | MEDLINE | ID: mdl-33463067

ABSTRACT

BACKGROUND: Osteogenesis imperfecta (OI) is a rare genetic disease characterized by bone fragility, with a wide range in the severity of clinical manifestations. The majority of cases are due to mutations in the COL1A1 or COL1A2 genes, which encode type I collagen. Mesenchymal stem cells (MSCs), as the progenitors of the osteoblasts, the main type I collagen secreting cell type in the bone, have been proposed and tested as an innovative therapy for OI with promising but transient outcomes. METHODS: To overcome the short-term effect of MSCs therapy, we performed a phase I clinical trial based on reiterative infusions of histocompatible MSCs, administered in a 2.5-year period, in two pediatric patients affected by severe and moderate OI. The aim of this study was to assess the safety and effectiveness of this cell therapy in nonimmunosuppressed OI patients. The host response to MSCs was studied by analyzing the sera from OI patients, collected before, during, and after the cell therapy. RESULTS: We first demonstrated that the sequential administration of MSCs was safe and improved the bone parameters and quality of life of OI patients along the cell treatment plus 2-year follow-up period. Moreover, the study of the mechanism of action indicated that MSCs therapy elicited a pro-osteogenic paracrine response in patients, especially noticeable in the patient affected by severe OI. CONCLUSIONS: Our results demonstrate the feasibility and potential of reiterative MSCs infusion for two pediatric OI and highlight the paracrine response shown by patients as a consequence of MSCs treatment.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Osteogenesis Imperfecta/therapy , Paracrine Communication/drug effects , Child , Feasibility Studies , Female , Follow-Up Studies , Humans , Male , Osteogenesis Imperfecta/metabolism , Treatment Outcome
10.
Clin Genet ; 97(6): 890-901, 2020 06.
Article in English | MEDLINE | ID: mdl-32266967

ABSTRACT

Primrose syndrome (PS; MIM# 259050) is characterized by intellectual disability (ID), macrocephaly, unusual facial features (frontal bossing, deeply set eyes, down-slanting palpebral fissures), calcified external ears, sparse body hair and distal muscle wasting. The syndrome is caused by de novo heterozygous missense variants in ZBTB20. Most of the 29 published patients are adults as characteristics appear more recognizable with age. We present 13 hitherto unpublished individuals and summarize the clinical and molecular findings in all 42 patients. Several signs and symptoms of PS develop during childhood, but the cardinal features, such as calcification of the external ears, cystic bone lesions, muscle wasting, and contractures typically develop between 10 and 16 years of age. Biochemically, anemia and increased alpha-fetoprotein levels are often present. Two adult males with PS developed a testicular tumor. Although PS should be regarded as a progressive entity, there are no indications that cognition becomes more impaired with age. No obvious genotype-phenotype correlation is present. A subgroup of patients with ZBTB20 variants may be associated with mild, nonspecific ID. Metabolic investigations suggest a disturbed mitochondrial fatty acid oxidation. We suggest a regular surveillance in all adult males with PS until it is clear whether or not there is a truly elevated risk of testicular cancer.


Subject(s)
Abnormalities, Multiple/genetics , Calcinosis/genetics , Ear Diseases/genetics , Genetic Predisposition to Disease , Intellectual Disability/genetics , Megalencephaly/genetics , Muscular Atrophy/genetics , Nerve Tissue Proteins/genetics , Transcription Factors/genetics , 3-Hydroxyacyl CoA Dehydrogenases/genetics , Abnormalities, Multiple/pathology , Acetyl-CoA C-Acyltransferase/genetics , Adolescent , Adult , Calcinosis/pathology , Carbon-Carbon Double Bond Isomerases/genetics , Child , Child, Preschool , Ear Diseases/pathology , Enoyl-CoA Hydratase/genetics , Face/abnormalities , Female , Genetic Association Studies , Heterozygote , Humans , Infant , Intellectual Disability/pathology , Male , Megalencephaly/pathology , Middle Aged , Mitochondria/genetics , Mitochondria/pathology , Muscular Atrophy/pathology , Mutation , Mutation, Missense/genetics , Phenotype , Racemases and Epimerases/genetics , Testicular Neoplasms , Young Adult
11.
Genes (Basel) ; 11(1)2020 01 02.
Article in English | MEDLINE | ID: mdl-31906484

ABSTRACT

X-linked intellectual disability (XLID) is known to contribute up to 10% of intellectual disability (ID) in males and could explain the increased ratio of affected males observed in patients with ID. Over the past decade, next-generation sequencing has clearly stimulated the gene discovery process and has become part of the diagnostic procedure. We have performed targeted next-generation sequencing of 82 XLID genes on 61 non-related male patients with suggestive non-syndromic XLID. These patients were initially referred to the molecular genetics laboratory to exclude Fragile X Syndrome. The cohort includes 47 male patients with suggestive X-linked family history of ID meaning that they had half-brothers or maternal cousins or uncles affected; and 14 male patients with ID and affected brothers whose mothers show skewed X-inactivation. Sequencing data analysis identified 17 candidate variants in 16 patients. Seven families could be re-contacted and variant segregation analysis of the respective eight candidate variants was performed: HUWE1, IQSEC2, MAOA, MED12, PHF8, SLC6A8, SLC9A6, and SYN1. Our results show the utility of targeted next-generation sequencing in unravelling the genetic origin of XLID, especially in retrospective cases. Variant segregation and additional studies like RNA sequencing and biochemical assays also helped in re-evaluating and further classifying the genetic variants found.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Mental Retardation, X-Linked/diagnosis , Mental Retardation, X-Linked/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Exome/genetics , Fragile X Syndrome , Genes, X-Linked/genetics , Guanine Nucleotide Exchange Factors/genetics , Humans , Infant , Intellectual Disability/genetics , Male , Mediator Complex/genetics , Monoamine Oxidase/genetics , Mutation/genetics , Nerve Tissue Proteins/genetics , Pedigree , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Retrospective Studies , Sodium-Hydrogen Exchangers/genetics , Transcription Factors , Exome Sequencing/methods
12.
World J Stem Cells ; 11(9): 578-593, 2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31616536

ABSTRACT

Functional impairment of mesenchymal stem cells (MSCs), osteoblast progenitor cells, has been proposed to be a pathological mechanism contributing to bone disorders, such as osteoporosis (the most common bone disease) and other rare inherited skeletal dysplasias. Pathological bone loss can be caused not only by an enhanced bone resorption activity but also by hampered osteogenic differentiation of MSCs. The majority of the current treatment options counteract bone loss, and therefore bone fragility by blocking bone resorption. These so-called antiresorptive treatments, in spite of being effective at reducing fracture risk, cannot be administered for extended periods due to security concerns. Therefore, there is a real need to develop osteoanabolic therapies to promote bone formation. Human MSCs emerge as a suitable tool to study the etiology of bone disorders at the cellular level as well as to be used for cell therapy purposes for bone diseases. This review will focus on the most relevant findings using human MSCs as an in vitro cell model to unravel pathological bone mechanisms and the application and outcomes of human MSCs in cell therapy clinical trials for bone disease.

13.
Am J Med Genet C Semin Med Genet ; 181(4): 502-508, 2019 12.
Article in English | MEDLINE | ID: mdl-31479583

ABSTRACT

Sotos syndrome is an overgrowth-intellectual disability (OGID) syndrome caused by NSD1 pathogenic variants and characterized by a distinctive facial appearance, an intellectual disability, tall stature and/or macrocephaly. Other associated clinical features include scoliosis, seizures, renal anomalies, and cardiac anomalies. However, many of the published Sotos syndrome clinical descriptions are based on studies of children; the phenotype in adults with Sotos syndrome is not yet well described. Given that it is now 17 years since disruption of NSD1 was shown to cause Sotos syndrome, many of the children first reported are now adults. It is therefore timely to investigate the phenotype of 44 adults with Sotos syndrome and NSD1 pathogenic variants. We have shown that adults with Sotos syndrome display a wide spectrum of intellectual ability with functioning ranging from fully independent to fully dependent. Reproductive rates are low. In our cohort, median height in adult women is +1.9 SD and men +0.5 SD. There is a distinctive facial appearance in adults with a tall, square, prominent chin. Reassuringly, adults with Sotos syndrome are generally healthy with few new medical issues; however, lymphedema, poor dentition, hearing loss, contractures and tremor have developed in a small number of individuals.


Subject(s)
Phenotype , Sotos Syndrome/physiopathology , Adult , Child , Facies , Female , Humans , Intellectual Disability/genetics , Male , Sotos Syndrome/genetics , Sotos Syndrome/psychology
15.
Genet Med ; 21(6): 1295-1307, 2019 06.
Article in English | MEDLINE | ID: mdl-30349098

ABSTRACT

PURPOSE: Pathogenic variants in ARID1B are one of the most frequent causes of intellectual disability (ID) as determined by large-scale exome sequencing studies. Most studies published thus far describe clinically diagnosed Coffin-Siris patients (ARID1B-CSS) and it is unclear whether these data are representative for patients identified through sequencing of unbiased ID cohorts (ARID1B-ID). We therefore sought to determine genotypic and phenotypic differences between ARID1B-ID and ARID1B-CSS. In parallel, we investigated the effect of different methods of phenotype reporting. METHODS: Clinicians entered clinical data in an extensive web-based survey. RESULTS: 79 ARID1B-CSS and 64 ARID1B-ID patients were included. CSS-associated dysmorphic features, such as thick eyebrows, long eyelashes, thick alae nasi, long and/or broad philtrum, small nails and small or absent fifth distal phalanx and hypertrichosis, were observed significantly more often (p < 0.001) in ARID1B-CSS patients. No other significant differences were identified. CONCLUSION: There are only minor differences between ARID1B-ID and ARID1B-CSS patients. ARID1B-related disorders seem to consist of a spectrum, and patients should be managed similarly. We demonstrated that data collection methods without an explicit option to report the absence of a feature (such as most Human Phenotype Ontology-based methods) tended to underestimate gene-related features.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Abnormalities, Multiple/genetics , Adolescent , Adult , Child , Child, Preschool , Chromosomal Proteins, Non-Histone/genetics , Exome , Face/abnormalities , Female , Genetic Association Studies/methods , Genetic Variation/genetics , Hand Deformities, Congenital/genetics , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Male , Micrognathism/genetics , Middle Aged , Mutation , Neck/abnormalities , Penetrance
16.
BMC Med Genomics ; 11(1): 124, 2018 Dec 27.
Article in English | MEDLINE | ID: mdl-30587166

ABSTRACT

BACKGROUND: Silver-Russell Syndrome (SRS) is a rare growth-related genetic disorder mainly characterized by prenatal and postnatal growth failure. Although molecular causes are not clear in all cases, the most common mechanisms involved in SRS are loss of methylation on chromosome 11p15 (≈50%) and maternal uniparental disomy for chromosome 7 (upd(7)mat) (≈10%). CASE PRESENTATION: We present a girl with clinical suspicion of SRS (intrauterine and postnatal growth retardation, prominent forehead, triangular face, mild psychomotor delay, transient neonatal hypoglycemia, mild hypotonia and single umbilical artery). Methylation and copy number variations at chromosomes 11 and 7 were studied by methylation-specific multiplex ligation-dependent probe amplification and as no alterations were found, molecular karyotyping was performed. A deletion at 5p15.33p15.2 was identified (arr[GRCh37] 5p15.33p15.2(25942-11644643)× 1), similar to those found in patients with Cri-du-chat Syndrome (CdCS). CdCS is a genetic disease resulting from a deletion of variable size occurring on the short arm of chromosome 5 (5p-), whose main feature is a high-pitched mewing cry in infancy, accompanied by multiple congenital anomalies, intellectual disability, microcephaly and facial dysmorphism. CONCLUSIONS: The absence of some CdCS features in the current patient could be due to the fact that in her case the critical regions responsible do not lie within the identified deletion. In fact, a literature review revealed a high degree of concordance between the clinical manifestations of the two syndromes.


Subject(s)
Silver-Russell Syndrome/diagnosis , Child , Chromosomes, Human, Pair 5 , Comparative Genomic Hybridization , Cri-du-Chat Syndrome/diagnosis , Cri-du-Chat Syndrome/genetics , Diagnosis, Differential , Female , Gene Deletion , Humans , Karyotyping , Silver-Russell Syndrome/genetics
18.
Front Genet ; 9: 479, 2018.
Article in English | MEDLINE | ID: mdl-30386378

ABSTRACT

Mutations in PAX6 are involved in several developmental eye disorders. These disorders have considerable phenotypic variability, ranging from panocular forms of congenital aniridia and microphthalmia to isolated anomalies of the anterior or posterior segment. Here, we describe 3 families with variable inter-generational ocular expression of aniridia, iris coloboma, or microphthalmia, and an unusual transmission of PAX6 mutations from an unaffected or mildly affected parent; all of which raised suspicion of gonosomal mosaicism. We first identified two previously known nonsense mutations and one novel likely pathogenic missense variant in PAX6 in probands by means of targeted NGS. The subsequent segregation analysis by Sanger sequencing evidenced the presence of highly probable mosaic events in paternal blood samples. Mosaicism was further confirmed by droplet digital PCR analysis in several somatic tissues of mosaic fathers. Quantification of the mutant allele fraction in parental samples showed a marked deviation from 50%, with a range between 12 and 29% depending on cell type. Gonosomal mosaicsm was definitively confirmed in one of the families thanks to the availability of a sperm sample from the mosaic father. Thus, the recurrence risk in this family was estimated to be about one-third. This is the first report confirming parental PAX6 mosaicism as a cause of disease recurrence in aniridia and other related phenotypes. In addition, we demonstrated that post-zygotic mosaicism is a frequent and underestimated pathogenic mechanism in aniridia, explaining intra-familial phenotypic variability in many cases. Our findings may have substantial implications for genetic counseling in congenital aniridia. Thus, we also highlight the importance of comprehensive genetic screening of parents for new sporadic cases with aniridia or related developmental eye disease to more accurately assess recurrence risk. In conclusion, somatic and/or gonosomal mosaicism should be taken into consideration as a genetic factor to explain not only families with unaffected parents despite multiple affected children but also variable expressivity, apparent de novo cases, and even uncharacterized cases of aniridia and related developmental eye disorders, apparently lacking PAX6 mutations.

19.
Am J Hum Genet ; 103(5): 786-793, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30343942

ABSTRACT

PCGF2 encodes the polycomb group ring finger 2 protein, a transcriptional repressor involved in cell proliferation, differentiation, and embryogenesis. PCGF2 is a component of the polycomb repressive complex 1 (PRC1), a multiprotein complex which controls gene silencing through histone modification and chromatin remodelling. We report the phenotypic characterization of 13 patients (11 unrelated individuals and a pair of monozygotic twins) with missense mutations in PCGF2. All the mutations affected the same highly conserved proline in PCGF2 and were de novo, excepting maternal mosaicism in one. The patients demonstrated a recognizable facial gestalt, intellectual disability, feeding problems, impaired growth, and a range of brain, cardiovascular, and skeletal abnormalities. Computer structural modeling suggests the substitutions alter an N-terminal loop of PCGF2 critical for histone biding. Mutant PCGF2 may have dominant-negative effects, sequestering PRC1 components into complexes that lack the ability to interact efficiently with histones. These findings demonstrate the important role of PCGF2 in human development and confirm that heterozygous substitutions of the Pro65 residue of PCGF2 cause a recognizable syndrome characterized by distinctive craniofacial, neurological, cardiovascular, and skeletal features.

20.
Wellcome Open Res ; 3: 46, 2018.
Article in English | MEDLINE | ID: mdl-29900417

ABSTRACT

Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as the DNMT3A-overgrowth syndrome, is an overgrowth intellectual disability syndrome first described in 2014 with a report of 13 individuals with constitutive heterozygous DNMT3A variants. Here we have undertaken a detailed clinical study of 55 individuals with de novoDNMT3A variants, including the 13 previously reported individuals. An intellectual disability and overgrowth were reported in >80% of individuals with TBRS and were designated major clinical associations. Additional frequent clinical associations (reported in 20-80% individuals) included an evolving facial appearance with low-set, heavy, horizontal eyebrows and prominent upper central incisors; joint hypermobility (74%); obesity (weight ³2SD, 67%); hypotonia (54%); behavioural/psychiatric issues (most frequently autistic spectrum disorder, 51%); kyphoscoliosis (33%) and afebrile seizures (22%). One individual was diagnosed with acute myeloid leukaemia in teenage years. Based upon the results from this study, we present our current management for individuals with TBRS.

SELECTION OF CITATIONS
SEARCH DETAIL
...