Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 24(1): 167, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755524

ABSTRACT

BACKGROUND: The world faces a major infectious disease challenge. Interest in the discovery, design, or development of antimicrobial peptides (AMPs) as an alternative approach for the treatment of bacterial infections has increased. Insects are a good source of AMPs which are the main effector molecules of their innate immune system. Black Soldier Fly Larvae (BSFL) are being developed for large-scale rearing for food sustainability, waste reduction and as sustainable animal and fish feed. Bioinformatic studies have suggested that BSFL have the largest number of AMPs identified in insects. However, most AMPs identified in BSF have not yet undergone antimicrobial evaluation but are promising leads to treat critical infections. RESULTS: Jg7197.t1, Jg7902.t1 and Jg7904.t1 were expressed into the haemolymph of larvae following infection with Salmonella enterica serovar Typhimurium and were predicted to be AMPs using the computational tool ampir. The genes encoding these proteins were within 2 distinct clusters in chromosome 1 of the BSF genome. Following removal of signal peptides, predicted structures of the mature proteins were superimposed, highlighting a high degree of structural conservation. The 3 AMPs share primary sequences with proteins that contain a Kunitz-binding domain; characterised for inhibitory action against proteases, and antimicrobial activities. An in vitro antimicrobial screen indicated that heterologously expressed SUMO-Jg7197.t1 and SUMO-Jg7902.t1 did not show activity against 12 bacterial strains. While recombinant SUMO-Jg7904.t1 had antimicrobial activity against a range of Gram-negative and Gram-positive bacteria, including the serious pathogen Pseudomonas aeruginosa. CONCLUSIONS: We have cloned and purified putative AMPs from BSFL and performed initial in vitro experiments to evaluate their antimicrobial activity. In doing so, we have identified a putative novel defensin-like AMP, Jg7904.t1, encoded in a paralogous gene cluster, with antimicrobial activity against P. aeruginosa.


Subject(s)
Anti-Bacterial Agents , Defensins , Diptera , Larva , Animals , Defensins/pharmacology , Defensins/genetics , Defensins/chemistry , Defensins/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Diptera/genetics , Larva/drug effects , Larva/genetics , Microbial Sensitivity Tests , Amino Acid Sequence , Insect Proteins/genetics , Insect Proteins/pharmacology , Insect Proteins/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Antimicrobial Peptides/chemistry , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Gram-Negative Bacteria/drug effects
3.
BMC Biol ; 19(1): 94, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33952283

ABSTRACT

BACKGROUND: The black soldier fly (Hermetia illucens) is the most promising insect candidate for nutrient-recycling through bioconversion of organic waste into biomass, thereby improving sustainability of protein supplies for animal feed and facilitating transition to a circular economy. Contrary to conventional livestock, genetic resources of farmed insects remain poorly characterised. We present the first comprehensive population genetic characterisation of H. illucens. Based on 15 novel microsatellite markers, we genotyped and analysed 2862 individuals from 150 wild and captive populations originating from 57 countries on seven subcontinents. RESULTS: We identified 16 well-distinguished genetic clusters indicating substantial global population structure. The data revealed genetic hotspots in central South America and successive northwards range expansions within the indigenous ranges of the Americas. Colonisations and naturalisations of largely unique genetic profiles occurred on all non-native continents, either preceded by demographically independent founder events from various single sources or involving admixture scenarios. A decisive primarily admixed Polynesian bridgehead population serially colonised the entire Australasian region and its secondarily admixed descendants successively mediated invasions into Africa and Europe. Conversely, captive populations from several continents traced back to a single North American origin and exhibit considerably reduced genetic diversity, although some farmed strains carry distinct genetic signatures. We highlight genetic footprints characteristic of progressing domestication due to increasing socio-economic importance of H. illucens, and ongoing introgression between domesticated strains globally traded for large-scale farming and wild populations in some regions. CONCLUSIONS: We document the dynamic population genetic history of a cosmopolitan dipteran of South American origin shaped by striking geographic patterns. These reflect both ancient dispersal routes, and stochastic and heterogeneous anthropogenic introductions during the last century leading to pronounced diversification of worldwide structure of H. illucens. Upon the recent advent of its agronomic commercialisation, however, current human-mediated translocations of the black soldier fly largely involve genetically highly uniform domesticated strains, which meanwhile threaten the genetic integrity of differentiated unique local resources through introgression. Our in-depth reconstruction of the contemporary and historical demographic trajectories of H. illucens emphasises benchmarking potential for applied future research on this emerging model of the prospering insect-livestock sector.


Subject(s)
Diptera , Animal Feed/analysis , Animals , Demography , Diptera/genetics , Genetics, Population , Humans , Larva
4.
Biol Control ; 155: 104527, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33814871

ABSTRACT

The entomopathogenic fungus (EPF) Metarhizium brunneum occupies the same ecological niche as entomopathogenic nematodes (EPN), with both competing for insects as a food source in the rhizosphere. Interactions between these biocontrol agents can be antagonistic or synergistic. To better understand these interactions, this study focussed on investigating the effect of M. brunneum volatile organic compounds (VOCs), 1-octen-3-ol and 3-octanone, on EPN survival and behaviour. These VOCs proved to be highly toxic to the infective juveniles (IJs) of the EPN Steinernema carpocapsae, Steinernema feltiae and Heterorhabditis bacteriophora with mortality being dose dependent. Chemotaxis studies of H. bacteriophora IJs in Pluronic F127 gel revealed significant preference for the VOCs compared with controls for all tested concentrations. The VOCs also impacted on the test insects in a dose-dependent manner with 3-octanone being more toxic to Galleria mellonella, Cydia splendana and Curculio elephas larvae than 1-octen-3-ol. Mortality of C. splendana and G. mellonella larvae was significantly higher when exposed to relatively high doses (>25%) of 3-octanone. Lower doses of 3-octanone and 1-octen-3-ol immobilised test insects, which recovered after exposure to fresh air for 2 hrs. In depth studies on H. bacteriophora showed that exposure of IJs to > 10% concentration of 3-octanone or 1-octen-3-ol negatively affected infectivity whereas exposure to lower doses (0.1%, 0.01%) had no effect. The VOCs affected IJs, reducing penetration efficacy and the number of generations inside G. mellonella but they failed to inhibit the bacterial symbiont, Photorhabdus kayaii. The ecological significance of VOCs and how they could influence EPF-EPN insect interactions is discussed.

5.
G3 (Bethesda) ; 11(5)2021 05 07.
Article in English | MEDLINE | ID: mdl-33734373

ABSTRACT

Hermetia illucens L. (Diptera: Stratiomyidae), the Black Soldier Fly (BSF) is an increasingly important species for bioconversion of organic material into animal feed. We generated a high-quality chromosome-scale genome assembly of the BSF using Pacific Bioscience, 10X Genomics linked read and high-throughput chromosome conformation capture sequencing technology. Scaffolding the final assembly with Hi-C data produced a highly contiguous 1.01 Gb genome with 99.75% of scaffolds assembled into pseudochromosomes representing seven chromosomes with 16.01 Mb contig and 180.46 Mb scaffold N50 values. The highly complete genome obtained a Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness of 98.6%. We masked 67.32% of the genome as repetitive sequences and annotated a total of 16,478 protein-coding genes using the BRAKER2 pipeline. We analyzed an established lab population to investigate the genomic variation and architecture of the BSF revealing six autosomes and an X chromosome. Additionally, we estimated the inbreeding coefficient (1.9%) of the lab population by assessing runs of homozygosity. This provided evidence for inbreeding events including long runs of homozygosity on chromosome 5. The release of this novel chromosome-scale BSF genome assembly will provide an improved resource for further genomic studies, functional characterization of genes of interest and genetic modification of this economically important species.


Subject(s)
Chromosomes , Diptera , Animals , Chromosomes/genetics , Diptera/genetics , Genome , Genomics , Repetitive Sequences, Nucleic Acid
6.
Gigascience ; 9(8)2020 08 01.
Article in English | MEDLINE | ID: mdl-32808665

ABSTRACT

BACKGROUND: Diploid genome assembly is typically impeded by heterozygosity because it introduces errors when haplotypes are collapsed into a consensus sequence. Trio binning offers an innovative solution that exploits heterozygosity for assembly. Short, parental reads are used to assign parental origin to long reads from their F1 offspring before assembly, enabling complete haplotype resolution. Trio binning could therefore provide an effective strategy for assembling highly heterozygous genomes, which are traditionally problematic, such as insect genomes. This includes the wood tiger moth (Arctia plantaginis), which is an evolutionary study system for warning colour polymorphism. FINDINGS: We produced a high-quality, haplotype-resolved assembly for Arctia plantaginis through trio binning. We sequenced a same-species family (F1 heterozygosity ∼1.9%) and used parental Illumina reads to bin 99.98% of offspring Pacific Biosciences reads by parental origin, before assembling each haplotype separately and scaffolding with 10X linked reads. Both assemblies are contiguous (mean scaffold N50: 8.2 Mb) and complete (mean BUSCO completeness: 97.3%), with annotations and 31 chromosomes identified through karyotyping. We used the assembly to analyse genome-wide population structure and relationships between 40 wild resequenced individuals from 5 populations across Europe, revealing the Georgian population as the most genetically differentiated with the lowest genetic diversity. CONCLUSIONS: We present the first invertebrate genome to be assembled via trio binning. This assembly is one of the highest quality genomes available for Lepidoptera, supporting trio binning as a potent strategy for assembling heterozygous genomes. Using our assembly, we provide genomic insights into the geographic population structure of A. plantaginis.


Subject(s)
Moths , Animals , Genome , Genomics , Haplotypes , Humans , Wood
SELECTION OF CITATIONS
SEARCH DETAIL
...