Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Lett ; 592: 216927, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38697460

ABSTRACT

Glioblastoma (GBM), one of the most malignant brain tumors in the world, has limited treatment options and a dismal survival rate. Effective and safe disease-modifying drugs for glioblastoma are urgently needed. Here, we identified a small molecule, Molephantin (EM-5), effectively penetrated the blood-brain barrier (BBB) and demonstrated notable antitumor effects against GBM with good safety profiles both in vitro and in vivo. Mechanistically, EM-5 not only inhibits the proliferation and invasion of GBM cells but also induces cell apoptosis through the reactive oxygen species (ROS)-mediated PI3K/Akt/mTOR pathway. Furthermore, EM-5 causes mitochondrial dysfunction and blocks mitophagy flux by impeding the fusion of mitophagosomes with lysosomes. It is noteworthy that EM-5 does not interfere with the initiation of autophagosome formation or lysosomal function. Additionally, the mitophagy flux blockage caused by EM-5 was driven by the accumulation of intracellular ROS. In vivo, EM-5 exhibited significant efficacy in suppressing tumor growth in a xenograft model. Collectively, our findings not only identified EM-5 as a promising, effective, and safe lead compound for treating GBM but also uncovered its underlying mechanisms from the perspective of apoptosis and mitophagy.


Subject(s)
Apoptosis , Brain Neoplasms , Cell Proliferation , Glioblastoma , Mitophagy , Reactive Oxygen Species , Xenograft Model Antitumor Assays , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Reactive Oxygen Species/metabolism , Humans , Mitophagy/drug effects , Animals , Apoptosis/drug effects , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Mice , Cell Proliferation/drug effects , Signal Transduction/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Mice, Nude , TOR Serine-Threonine Kinases/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Proto-Oncogene Proteins c-akt/metabolism
2.
Infect Immun ; 72(5): 2628-34, 2004 May.
Article in English | MEDLINE | ID: mdl-15102771

ABSTRACT

Immune factors influencing progression to active tuberculosis (TB) remain poorly defined. In this study, we investigated the expression of immunoregulatory cytokines and receptors by using lung bronchoalveolar lavage cells obtained from patients with pulmonary TB, patients with other lung diseases (OLD patients), and healthy volunteers (VOL) by using reverse transcriptase PCR, a transforming growth factor beta (TGF-beta) bioactivity assay, and an enzyme immunoassay. TB patients were significantly more likely than OLD patients to coexpress TGF-beta receptor I (RI) and RII mRNA, as well as interleukin-10 (IL-10) mRNA (thereby indicating the state of active gene transcription in the alveolar cells at harvest). In contrast, gamma interferon (IFN-gamma) and IL-2 mRNA was seen in both TB and OLD patients. Likewise, significantly elevated pulmonary steady-state protein levels of IL-10, IFN-gamma, and bioactive TGF-beta were found in TB patients versus those in OLD patients and VOL. These data suggest that the combined production of the immunosuppressants IL-10 and TGF-beta, as well as coexpression of TGF-beta RI and RII (required for cellular response to TGF-beta), may act to down-modulate host anti-Mycobacterium tuberculosis immunity and thereby allow uncontrolled bacterial replication and overt disease. Delineating the underlying mechanisms of M. tuberculosis-triggered expression of these immune elements may provide a molecular-level understanding of TB immunopathogenesis.


Subject(s)
Activin Receptors, Type I/genetics , Interleukin-10/biosynthesis , Receptors, Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/biosynthesis , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/immunology , Adult , Base Sequence , Bronchoalveolar Lavage Fluid/immunology , Case-Control Studies , DNA, Complementary/genetics , Female , Gene Expression , Humans , Immune Tolerance , Interleukin-10/genetics , Lung Diseases/genetics , Lung Diseases/immunology , Male , Middle Aged , Protein Serine-Threonine Kinases , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptor, Transforming Growth Factor-beta Type II , Transforming Growth Factor beta/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...