Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 826909, 2022.
Article in English | MEDLINE | ID: mdl-35401644

ABSTRACT

Gliadin is a group of grain storage proteins that confers extensibility/viscosity to the dough and are vital to end-use quality in wheat. Moreover, gliadins are one of the important components for nutritional quality because they contain the nutritional unprofitable epitopes that cause chronic immune-mediated intestinal disorder in genetically susceptible individuals designated celiac disease (CD). The main genetic loci encoding the gliadins were revealed by previous studies; however, the genes related to the content of gliadins and their fractions were less elucidated. To illustrate the genetic basis of the content of gliadins and their fractions comprehensively, a recombinant inbred line (RIL) population that consisted of 196 lines was constructed from the two parents, Luozhen No.1 and Zhengyumai 9987. Quantitative trait loci (QTL) controlling the content of total gliadins and their fractions (ω-, α-, and γ-gliadin) were screened genome-widely under four environments across 2 years. Totally, thirty QTL which explained 1.97-12.83% of the phenotypic variation were detected to be distributed on 17 chromosomes and they were gathered into 12 clusters. One hundred and one pairs of epistatic QTL (E-QTL) were revealed, among which five were involved with the total gliadins and its fractions content QTL located on chromosome 1AS, 1DS, 4DS, 1DL, and 6AS. Three Kompetitive Allele-Specific PCR (KASP) markers were developed from three major QTL clusters located on chromosomes 6A, 6D, and 7D, respectively. The present research not only dissects the genetic loci for improving the content of gliadins and their three fractions, but may also contribute to marker-assisted selection of varieties with appropriate gliadin fractions content for end-use quality and health benefit at the early developmental stages and early breeding generations.

2.
BMC Plant Biol ; 21(1): 523, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34758752

ABSTRACT

BACKGROUND: Peroxidase (POD) activity plays an important role in flour-based product quality, which is mainly associated with browning and bleaching effects of flour. Here, we performed a genome-wide association study (GWAS) on POD activity using an association population consisted with 207 wheat world-wide collected varieties. Our study also provide basis for the genetic improvement of flour color-based quality in wheat. RESULTS: Twenty quantitative trait loci (QTLs) were detected associated with POD activity, explaining 5.59-12.67% of phenotypic variation. Superior alleles were positively correlated with POD activity. In addition, two SNPs were successfully developed to KASP (Kompetitive Allele-Specific PCR) markers. Two POD genes, TraesCS2B02G615700 and TraesCS2D02G583000, were aligned near the QTLs flanking genomic regions, but only TraesCS2D02G583000 displayed significant divergent expression levels (P < 0.001) between high and low POD activity varieties in the investigated association population. Therefore, it was deduced to be a candidate gene. The expression level of TraesCS2D02G583000 was assigned as a phenotype for expression GWAS (eGWAS) to screen regulatory elements. In total, 505 significant SNPs on 20 chromosomes (excluding 4D) were detected, and 9 of them located within 1 Mb interval of TraesCS2D02G583000. CONCLUSIONS: To identify genetic loci affecting POD activity in wheat grain, we conducted GWAS on POD activity and the candidate gene TraesCS2D02G583000 expression. Finally, 20 QTLs were detected for POD activity, whereas two QTLs associated SNPs were converted to KASP markers that could be used for marker-assisted breeding. Both cis- and trans-acting elements were revealed by eGWAS of TraesCS2D02G583000 expression. The present study provides genetic loci for improving POD activity across wide genetic backgrounds and largely improved the selection efficiency for breeding in wheat.


Subject(s)
Genome, Plant , Peroxidase/genetics , Triticum/enzymology , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant , Flour , Genetic Markers , Genome-Wide Association Study , Peroxidase/metabolism , Pigmentation/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL