Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(7): e2308839, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37906727

ABSTRACT

Highly selective semihydrogenation of alkynes to alkenes is a highly important reaction for catalytic industry. Developing non-noble metal based catalysts with platinum group metal-like activity and selectivity is extremely crucial yet challenging. Metastable phase catalysts provide a potential candidate to realize high activity, yet the control of selectivity remains an open question. Here, this work first reports a metastable phase core-shell: face-centered cubic (fcc) phase Ag (10 at%) core-metastable hexagonal closest packed (hcp) phase Ni (90 at%) shell catalyst, which represents high conversion rate, high selectivity, and remarkable universality for the semihydrogenation of phenylacetylene and its derivatives. More impressively, a turnover frequency (TOF) value of 8241.8 h-1 is achieved, much higher than those of stable phase catalysts and reported platinum group metal based catalysts. Mechanistic investigation reveals that the surface of hcp Ni becomes more oxidized due to electron transfer from hcp Ni shell to fcc Ag core, which decreases the adsorption capacity of styrene on the metastable phase Ni surface, thus preventing full hydrogenation. This work has gained crucial research significance for the design of high performance metastable phase catalysts.

2.
Small ; 20(22): e2310036, 2024 May.
Article in English | MEDLINE | ID: mdl-38126916

ABSTRACT

Strain effect in the structurally defective materials can contribute to the catalysis optimization. However, it is challenging to achieve the performance improvement by strain modulation with the help of geometrical structure because strain is spatially dependent. Here, a new class of compressively strained platinum-iridium-metal zigzag-like nanowires (PtIrM ZNWs, M = nickel (Ni), cobalt (Co), iron (Fe), zinc (Zn) and gallium (Ga)) is reported as the efficient alkaline hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) catalysts. Particularly, the optimized PtIrNi ZNWs with 3% compressive strain (cs-PtIrNi ZNWs) can achieve the highest HER/HOR performances among all the catalysts investigate. Their HOR mass and specific activities are 3.2/14.4 and 2.6/32.7 times larger than those of PtIrNi NWs and commercial Pt/C, respectively. Simultaneously, they can exhibit the superior stability and high CO resistance for HOR. Further, experimental and theoretical studies collectively reveal that the compressive strain in cs-PtIrNi ZNWs effectively weakens the adsorption of hydroxyl intermediate and modulates the electronic structure, resulting in the weakened hydrogen binding energy (HBE) and moderate hydroxide binding energy (OHBE), beneficial for the improvement of HOR performance. This work highlights the importance of strain tuning in enhancing Pt-based nanomaterials for hydrogen catalysis and beyond.

3.
ACS Nano ; 17(18): 17779-17789, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37708057

ABSTRACT

The development of high-performance platinum (Pt)-based electrocatalysts for the hydrogen oxidation reaction (HOR) is highly desirable for hydrogen fuel cells, but it is limited by the sluggish kinetics and severe carbon monoxide (CO) poisoning in alkaline medium. Herein, we explore a class of facet-selected Pt-nickel-indium fishbone-like nanowires (PtNiIn FNWs) featuring high-index facets (HIFs) of Pt3In skin as efficient alkaline HOR catalysts. Impressively, the optimized Pt66Ni6In28 FNWs show the highest mass and specific activities of 4.02 A mgPt-1 and 6.56 mA cm-2, 2.0/2.1 and 13.9/15.6 times larger than those of commercial PtRu/C and commercial Pt/C, respectively, along with a competitive CO-tolerance ability. Specifically, they exhibit only 6.0% current density decay after 10000 s of operation and 25.7% activity loss after 2000 s in the presence of 1000 ppm of CO. Moreover, an isotope experiment and density functional theory (DFT) calculations further prove that the unique structure and synergy among Pt, Ni, and In endow these Pt66Ni6In28 FNWs with an optimized hydrogen binding energy (HBE) and an advantageous hydroxide binding energy (OHBE), giving them excellent alkaline HOR properties. The combined construction of surface-skin and HIFs in PtNiIn FNWs will offer an available method to realize the potential applications of advanced non-PtRu-based catalysts in fuel cells and beyond.

4.
Adv Sci (Weinh) ; 10(11): e2206063, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36775850

ABSTRACT

Catalytic reactions are surface-sensitive processes. Fabrication of homogeneous metastable metals can be used to promote phase-dependent catalytic performance; however, this has been a challenging task. Herein, homogeneous metastable hexagonal close-packed (hcp) Ir is epitaxially grown onto metastable phase hcp Ni, as demonstrated using spherical aberration electron microscopy. The as-fabricated metastable hcp Ir exhibits high intrinsic activity for the alkaline hydrogen evolution reaction (HER). In particular, metastable hcp Ir delivers a low overpotential of 17 mV at 10 mA cm-2 and presents a high specific activity of 8.55 mA cm-2 and a high turnover frequency of 38.26 s-1 at -0.07 V versus the reversible hydrogen electrode. Owing to its epitaxially grown structure, metastable hcp Ir is highly stable. Theoretical calculations reveal that metastable hcp Ir promotes H2 O adsorption and fast H2 O dissociation, which contributes to its remarkable HER activity. Findings can elucidate the crystal phase-controlled synthesis of advanced noble metal nanomaterials for the fundamental catalytic applications.

5.
Nat Commun ; 13(1): 1187, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35246554

ABSTRACT

Amorphous materials have attracted increasing attention in diverse fields due to their unique properties, yet their controllable fabrications still remain great challenges. Here, we demonstrate a top-down strategy for the fabrications of amorphous oxides through the amorphization of hydroxides. The versatility of this strategy has been validated by the amorphizations of unitary, binary and ternary hydroxides. Detailed characterizations indicate that the amorphization process is realized by the variation of coordination environment during thermal treatment, where the M-OH octahedral structure in hydroxides evolves to M-O tetrahedral structure in amorphous oxides with the disappearance of the M-M coordination. The optimal amorphous oxide (FeCoSn(OH)6-300) exhibits superior oxygen evolution reaction (OER) activity in alkaline media, where the turnover frequency (TOF) value is 39.4 times higher than that of FeCoSn(OH)6. Moreover, the enhanced OER performance and the amorphization process are investigated with density functional theory (DFT) and molecule dynamics (MD) simulations. The reported top-down fabrication strategy for fabricating amorphous oxides, may further promote fundamental research into and practical applications of amorphous materials for catalysis.

6.
Nat Commun ; 12(1): 6007, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34650084

ABSTRACT

Exploring new materials is essential in the field of material science. Especially, searching for optimal materials with utmost atomic utilization, ideal activities and desirable stability for catalytic applications requires smart design of materials' structures. Herein, we report iridium metallene oxide: 1 T phase-iridium dioxide (IrO2) by a synthetic strategy combining mechanochemistry and thermal treatment in a strong alkaline medium. This material demonstrates high activity for oxygen evolution reaction with a low overpotential of 197 millivolt in acidic electrolyte at 10 milliamperes per geometric square centimeter (mA cmgeo-2). Together, it achieves high turnover frequencies of 4.2 sUPD-1 (3.0 sBET-1) at 1.50 V vs. reversible hydrogen electrode. Furthermore, 1T-IrO2 also shows little degradation after 126 hours chronopotentiometry measurement under the high current density of 250 mA cmgeo-2 in proton exchange membrane device. Theoretical calculations reveal that the active site of Ir in 1T-IrO2 provides an optimal free energy uphill in *OH formation, leading to the enhanced performance. The discovery of this 1T-metallene oxide material will provide new opportunities for catalysis and other applications.

7.
Small ; 17(44): e2103798, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34549505

ABSTRACT

The development of palladium-based catalysts for alkaline hydrogen evolution reaction (HER) is highly desired for renewable hydrogen energy systems, yet still challenging due to the strong palladium-hydrogen bond. Herein, the bottleneck is largely overcome by constructing a nitridation-induced compressively strained-interface N-doped palladium/amorphous cobalt (II) interface (N-Pd/A-Co(II)), which dramatically boosts HER performance in alkaline condition. The optimized catalyst with the compressive strain of 2.7% exhibits the higher activity with an overpotential of only 58 mV to achieve the current density of 10 mA cm-2 , much better than those of pure Pd (327 mV), and the state-of-art Pt/C (78 mV). Notably, it also shows excellent stability with negligible decline during a 30 h stability test. Detailed analyses reveal that the strong absorption of Hads on Pd can be efficiently reduced via the compressively strained N-doped Pd. And the amorphous Co(II) component accelerates the water dissociation. Consequently, the cooperative effect between the compressed N-doped Pd and amorphous Co(II) creates the impressive HER performance in alkaline condition, highlighting the importance of the functional interface to develop efficient electrocatalysts for HER and beyond.

8.
Adv Mater ; 32(40): e2002857, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32864791

ABSTRACT

Metastable materials are promising because of their catalytic properties, high-energy structure, and unique electronic environment. However, the unstable nature inherited from the metastability hinders further performance improvement and practical applications of these materials. Herein, this limitation is successfully addressed by constructing an in situ polymorphism interface (inf) between the metastable hexagonal-close-packed (hcp) phase and its stable counterpart (face-centered cubic, fcc) in cobalt-nickel (CoNi) alloy. Calculations reveal that the interfacial synergism derived from the hcp and fcc phases lowers the formation energy and enhances stability. Consequently, the optimized CoNi-inf exhibits an exceptionally low potential of 72 mV at 10 mA cm-2 and a Tafel slope of 57 mV dec-1 for the hydrogen evolution reaction (HER) in 1.0 m KOH. Furthermore, it is superior to most state-of-the-art non-noble-metal-based HER catalysts. No noticeable activity decay or structural changes are observed even over 14 h of catalysis. The computational simulation further rationalizes that the interface of CoNi-inf with a suitable d-band center provides uniform sites for hydrogen adsorption, leading to a distinguished HER catalytic activity. This work, therefore, presents a new route for designing metastable catalysts for potential energy conversion.

SELECTION OF CITATIONS
SEARCH DETAIL
...