Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(20): 14203-14212, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38733560

ABSTRACT

Nanomedicines often rely on noncovalent self-assembly and encapsulation for drug loading and delivery. However, challenges such as reproducibility issues due to the multicomponent nature, off-target activation caused by premature drug release, and complex pharmacokinetics arising from assembly dissociation have hindered their clinical translation. In this study, we introduce an innovative design concept termed single molecular nanomedicine (SMNM) based on macrocyclic carrier-drug conjugates. Through the covalent linkage of two chemotherapy drugs to a hypoxia-cleavable macrocyclic carrier, azocalix[4]arene, we obtained two self-included complexes to serve as SMNMs. The intramolecular inclusion feature of the SMNMs has not only demonstrated comprehensive shielding and protection for the drugs but also effectively prevented off-target drug leakage, thereby significantly reducing their side effects and enhancing their antitumor therapeutic efficacy. Additionally, the attributes of being a single component and molecularly dispersed confer advantages such as ease of preparation and good reproducibility for SMNMs, which is desirable for clinical applications.


Subject(s)
Antineoplastic Agents , Calixarenes , Drug Carriers , Nanomedicine , Humans , Drug Carriers/chemistry , Nanomedicine/methods , Calixarenes/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Animals , Macrocyclic Compounds/chemistry , Mice , Cell Line, Tumor , Drug Liberation
2.
ACS Nano ; 18(20): 13117-13129, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38727027

ABSTRACT

The complexity, heterogeneity, and drug resistance of diseases necessitate a shift in therapeutic paradigms from monotherapy to combination therapy, which could augment treatment efficiency. Effective treatment of advanced osteoarthritis (OA) requires addressing three key factors contributing to its deterioration: chronic joint inflammation, lubrication dysfunction, and cartilage-tissue degradation. Herein, we present a supramolecular nanomedicine of multifunctionality via molecular recognition and self-assembly. The employed macrocyclic carrier, zwitterion-modified cavitand (CV-2), not only accurately loads various drugs but also functions as a therapeutic agent with lubricating properties for the treatment of OA. Kartogenin (KGN), a drug for articular cartilage regeneration and protection, and flurbiprofen (FP), an anti-inflammatory agent, were coloaded onto CV-2 assembly, forming a supramolecular nanomedicine KGN&FP@CV-2. The three-in-one combination therapy of KGN&FP@CV-2 addresses the three pathological features for treating OA collectively, and thus provides long-term therapeutic benefits for OA through sustained drug release and intrinsic lubrication in vivo. The multifunctional integration of macrocyclic delivery and therapeutics provides a simple, flexible, and universal platform for the synergistic treatment of diseases involving multiple drugs.


Subject(s)
Flurbiprofen , Osteoarthritis , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Animals , Flurbiprofen/chemistry , Flurbiprofen/administration & dosage , Flurbiprofen/pharmacology , Phthalic Acids/chemistry , Phthalic Acids/pharmacology , Drug Delivery Systems , Humans , Drug Carriers/chemistry , Lubrication , Drug Liberation , Mice , Male , Anilides
3.
Angew Chem Int Ed Engl ; 63(23): e202402139, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38563765

ABSTRACT

The development of artificial receptors that combine ultrahigh-affinity binding and controllable release for active guests holds significant importance in biomedical applications. On one hand, a complex with an exceedingly high binding affinity can resist unwanted dissociation induced by dilution effect and complex interferents within physiological environments. On the other hand, stimulus-responsive release of the guest is essential for precisely activating its function. In this context, we expanded hydrophobic cavity surface of a hypoxia-responsive azocalix[4]arene, affording Naph-SAC4A. This modification significantly enhanced its aqueous binding affinity to 1013 M-1, akin to the naturally occurring strongest recognition pair, biotin/(strept-)avidin. Consequently, Naph-SAC4A emerges as the first artificial receptor to simultaneously integrate ultrahigh recognition affinity and actively controllable release. The markedly enhanced affinity not only improved Naph-SAC4A's sensitivity in detecting rocuronium bromide in serum, but also refined the precision of hypoxia-responsive doxorubicin delivery at the cellular level, demonstrating its immense potential for diverse practical applications.


Subject(s)
Avidin , Biotin , Calixarenes , Hydrophobic and Hydrophilic Interactions , Calixarenes/chemistry , Biotin/chemistry , Avidin/chemistry , Avidin/metabolism , Humans , Surface Properties , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/metabolism , Delayed-Action Preparations/chemistry , Phenols/chemistry
4.
J Control Release ; 368: 691-702, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492860

ABSTRACT

Host-guest drug delivery systems (HGDDSs) provided a facile method for incorporating biomedical functions, including efficient drug-loading, passive targeting, and controlled drug release. However, developing HGDDSs with active targeting is hindered by the difficult functionalization of popular macrocycles. Herein, we report an active targeting HGDDS based on biotin-modified sulfonated azocalix[4]arene (Biotin-SAC4A) to efficiently deliver drug into cancer cells for improving anti-tumor effect. Biotin-SAC4A was synthesized by amide condensation and azo coupling. Biotin-SAC4A demonstrated hypoxia responsive targeting and active targeting through azo and biotin groups, respectively. DOX@Biotin-SAC4A, which was prepared by loading doxorubicin (DOX) in Biotin-SAC4A, was evaluated for tumor targeting and therapy in vitro and in vivo. DOX@Biotin-SAC4A formulation effectively killed cancer cells in vitro and more efficiently delivered DOX to the lesion than the similar formulation without active targeting. Therefore, DOX@Biotin-SAC4A significantly improved the in vivo anti-tumor effect of free DOX. The facilely prepared Biotin-SAC4A offers strong DOX complexation, active targeting, and hypoxia-triggered release, providing a favorable host for effective breast cancer chemotherapy in HGDDSs. Moreover, Biotin-SAC4A also has potential to deliver agents for other therapeutic modalities and diseases.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Biotin , Drug Delivery Systems/methods , Doxorubicin , Breast Neoplasms/drug therapy , Hypoxia/drug therapy , Cell Line, Tumor , Drug Liberation
5.
Nat Commun ; 15(1): 1417, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360963

ABSTRACT

Biotechnological plastic recycling has emerged as a suitable option for addressing the pollution crisis. A major breakthrough in the biodegradation of poly(ethylene terephthalate) (PET) is achieved by using a LCC variant, which permits 90% conversion at an industrial level. Despite the achievements, its applications have been hampered by the remaining 10% of nonbiodegradable PET. Herein, we address current challenges by employing a computational strategy to engineer a hydrolase from the bacterium HR29. The redesigned variant, TurboPETase, outperforms other well-known PET hydrolases. Nearly complete depolymerization is accomplished in 8 h at a solids loading of 200 g kg-1. Kinetic and structural analysis suggest that the improved performance may be attributed to a more flexible PET-binding groove that facilitates the targeting of more specific attack sites. Collectively, our results constitute a significant advance in understanding and engineering of industrially applicable polyester hydrolases, and provide guidance for further efforts on other polymer types.


Subject(s)
Hydrolases , Polyethylene Terephthalates , Hydrolases/metabolism , Polyethylene Terephthalates/chemistry , Polymers
6.
ACS Nano ; 17(24): 25468-25482, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38096153

ABSTRACT

The complexity and progressive nature of diseases require the exploitation of multifunctional materials. However, introducing a function inevitably increases the complexity of materials, which complicates preparation and decreases reproducibility. Herein, we report a supramolecular integration of multifunctional nanomaterials based on mannose-modified azocalix[4]arene (ManAC4A) and ginsenoside Rb1 (Rb1), which showed advances of simplicity and reproducibility. ManAC4A possesses reactive oxygen species (ROS) scavenging capacity and hypoxia-responsiveness, together with macrophage-targeting and induction functionality. Collectively, the Rb1@ManAC4A assembly simply prepared by two components is integrated with multifunction, including triple targeting (ELVIS targeting, macrophage-targeting, and hypoxia-targeted release) and triple therapy (ROS scavenging, macrophage polarization, and the anti-inflammatory effect of Rb1). The spontaneous assembly and recognition of ManAC4A, with its precise structure and molecular weight, facilitated the simple and straightforward preparation of Rb1@ManAC4A, leading to excellent batch consistency. Progress in simplicity and reproducibility, as directed by this research, will catalyze the clinical translation of multifunctional materials.


Subject(s)
Arthritis, Rheumatoid , Nanostructures , Humans , Reactive Oxygen Species , Mannose , Reproducibility of Results , Hypoxia
7.
Angew Chem Int Ed Engl ; 62(51): e202315990, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37917047

ABSTRACT

Accurately distinguishing between enantiomeric molecules is a fundamental challenge in the field of chemistry. However, there is still significant room for improvement in both the enantiomeric selectivity (KR(S) /KS(R) ) and binding strength of most reported macrocyclic chiral receptors to meet the demands of practical application scenarios. Herein, we synthesized a water-soluble conjugated tubular host-namely, corral[4]BINOL-using a chiral 1,1'-bi-2-naphthol (BINOL) derivative as the repeating unit. The conjugated chiral backbone endows corral[4]BINOL with good fluorescent emission (QY=34 % ) and circularly polarized luminescence (|glum | up to 1.4×10-3 ) in water. Notably, corral[4]BINOL exhibits high recognition affinity up to 8.6×1010  M-1 towards achiral guests in water, and manifested excellent enantioselectivity up to 18.7 towards chiral substrates, both of which represent the highest values observed among chiral macrocycles in aqueous solution. The ultrastrong binding strength, outstanding enantioselectivity, and facile accessibility, together with the superior fluorescent and chiroptical properties, endow corral[4]BINOL with great potential for a wide range of applications.

8.
J Colloid Interface Sci ; 646: 616-624, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37210909

ABSTRACT

Pt-based multi-metallic electrocatalysts containing hetero-junctions are found to have superior catalytic performance to composition-equivalent counterparts. However, in bulk solution, controllable preparation of Pt-based hetero-junction electrocatalyst is an extremely random work owing to the complexity of solution reactions. Herein, we develop an interface-confined transformation strategy, subtly achieving Au/PtTe hetero-junction-abundant nanostructures by employing interfacial Te nanowires as sacrificing templates. By controlling the reaction conditions, composition-varied Au/PtTe can be easily obtained, such as Au75/Pt20Te5, Au55/Pt34Te11, and Au5/Pt69Te26. Moreover, each Au/PtTe hetero-junction nanostructure appears to be an array consisting of side-by-side Au/PtTe nanotrough units and can be directly used as a catalyst layer without further post-treatment. All Au/PtTe hetero-junction nanostructures show better catalytic activity towards ethanol electrooxidation than commercial Pt/C because of the combining contributions of Au/Pt hetero-junctions and the collective effects of multi-metallic elements, where Au75/Pt20Te5 exhibits the best electrocatalytic performance among three Au/PtTe nanostructures owing to its optimal composition. This study may provide technically feasible guidance for further maximizing the catalytic activity of Pt-based hybrid catalysts.

9.
Adv Mater ; 34(32): e2203765, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35680644

ABSTRACT

Macrocyclic delivery and therapeutics are two significant topics in supramolecular biomedicine. The functional integration of these topics would open new avenues for treating diseases synergistically. However, these two individual topics have only been occasionally merged, probably because of the lack of functionalized design of macrocyclic host and the lack of efficient recognition between host and guest drugs. Herein, a "drug-in-drug" strategy is proposed, in which an active drug is encapsulated by a macrocycle possessing therapeutic activity to form a multifunctional supramolecular active pharmaceutical ingredient. As a proof-of-concept, a complex of hydroxychloroquine (HCQ) with sulfonated azocalix[4]arene (HCQ@SAC4A) is prepared to treat rheumatoid arthritis (RA) in a combined fashion. SAC4A is a therapeutic agent that exhibits scavenging capacity for reactive oxygen species and exerts an anti-inflammatory effect. It is also a hypoxia-responsive carrier that can deliver HCQ directly to the inflammatory articular cavity. Consequently, HCQ@SAC4A achieves the synergistic anti-inflammatory effect on both inflamed RAW 264.7 cells and RA rats. This effect is attributed to the temporal and spatial consistency of the two active ingredients of the complex. As a new paradigm for combinational therapy, the drug-in-drug strategy advances in easy preparation, mix-and-match combination, and precise ratiometric control.


Subject(s)
Arthritis, Rheumatoid , Hydroxychloroquine , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Inflammation/drug therapy , Pharmaceutical Preparations , Rats
10.
Adv Sci (Weinh) ; 9(18): e2104463, 2022 06.
Article in English | MEDLINE | ID: mdl-35484718

ABSTRACT

Characterized by an excessively increased uric acid (UA) level in serum, hyperuricemia induces gout and also poses a great threat to renal and cardiovascular systems. It is urgent and meaningful to perform early warning by noninvasive diagnosis, thus conducing to blockage of disease aggravation. Here, guanidinocalix[5]arene (GC5A) is successfully identified from the self-built macrocyclic library to specifically monitor UA from urine by the indicator displacement assay. UA is strongly bound to GC5A at micromolar-level, while simultaneously excluding fluorescein (Fl) from the GC5A·Fl complex in the "switch-on" mode. This method successfully differentiates patients with hyperuricemia from volunteers except for those with kidney dysfunction and targets a volunteer at high risk of hyperuricemia. In order to meet the trend from hospital-centered to individual-centered testing, visual detection of UA is studied through a smartphone equipped with a color-scanning feature, whose adaptability and feasibility are demonstrated in sensing UA from authentic urine, leading to a promising method in family-centered healthcare style. A high-throughput and visual detection method is provided here for alarming hyperuricemic by noninvasive diagnosis.


Subject(s)
Gout , Hyperuricemia , Gout/diagnosis , Humans , Hyperuricemia/diagnosis , Kidney/metabolism , Uric Acid/metabolism
11.
Chem Asian J ; 17(10): e202200106, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35333438

ABSTRACT

Methionine is an essential amino acid involved in many physiological and pathological processes. Methionine starvation caused by methionine decarboxylase (MetDC) degradation becomes a promising strategy for cancer treatment. Multistep colorimetric method, the present approach to monitor the MetDC activity, possesses drawbacks of the complicated process, low accuracy, and poor anti-interference due to indirect detection. Herein, we report a facile and easy-to-use supramolecular tandem assay (STA) with the cucurbit[7]uril and acridine orange reporter pair for the direct and real-time monitoring of MetDC activity. This strategy not only provides a feasible method for enzymatic activity detection but also establishes the capability of inhibitor screening.


Subject(s)
Carboxy-Lyases , Bridged-Ring Compounds/chemistry , Carboxy-Lyases/metabolism , Methionine
12.
Biotechnol Adv ; 54: 107813, 2022.
Article in English | MEDLINE | ID: mdl-34450199

ABSTRACT

Nitrogen-containing heterocycles (N-heterocycles) are ubiquitous in both organisms and pharmaceutical products. Biocatalysts are providing green approaches for synthesizing various N-heterocycles under mild reaction conditions. This review summarizes the recent advances in the biocatalysis of N-heterocycles through the discovery and engineering of natural N-heterocycle synthetic pathway, and the design of artificial synthetic routes, with an emphasis on biocatalysts applied in retrosynthetic design for preparing complex N-heterocycles. Furthermore, this review discusses the future prospects and challenges of biocatalysts involved in the synthesis of N-heterocycles.


Subject(s)
Nitrogen , Biocatalysis
13.
J Nanobiotechnology ; 19(1): 451, 2021 Dec 27.
Article in English | MEDLINE | ID: mdl-34961540

ABSTRACT

BACKGROUND: Hypoxia is a major contributor to global kidney diseases. Targeting hypoxia is a promising therapeutic option against both acute kidney injury and chronic kidney disease; however, an effective strategy that can achieve simultaneous targeted kidney hypoxia imaging and therapy has yet to be established. Herein, we fabricated a unique nano-sized hypoxia-sensitive coassembly (Pc/C5A@EVs) via molecular recognition and self-assembly, which is composed of the macrocyclic amphiphile C5A, the commercial dye sulfonated aluminum phthalocyanine (Pc) and mesenchymal stem cell-excreted extracellular vesicles (MSC-EVs). RESULTS: In murine models of unilateral or bilateral ischemia/reperfusion injury, MSC-EVs protected the Pc/C5A complex from immune metabolism, prolonged the circulation time of the complex, and specifically led Pc/C5A to hypoxic kidneys via surface integrin receptor α4ß1 and αLß2, where Pc/C5A released the near-infrared fluorescence of Pc and achieved enhanced hypoxia-sensitive imaging. Meanwhile, the coassembly significantly recovered kidney function by attenuating cell apoptosis, inhibiting the progression of renal fibrosis and reducing tubulointerstitial inflammation. Mechanistically, the Pc/C5A coassembly induced M1-to-M2 macrophage transition by inhibiting the HIF-1α expression in hypoxic renal tubular epithelial cells (TECs) and downstream NF-κB signaling pathway to exert their regenerative effects. CONCLUSION: This synergetic nanoscale coassembly with great translational potential provides a novel strategy for precise kidney hypoxia diagnosis and efficient kidney injury treatment. Furthermore, our strategy of coassembling exogenous macrocyclic receptors with endogenous cell-derived membranous structures may offer a functional platform to address multiple clinical needs.


Subject(s)
Acute Kidney Injury/diagnostic imaging , Acute Kidney Injury/drug therapy , Cell Hypoxia/drug effects , Extracellular Vesicles/chemistry , Macrocyclic Compounds/chemistry , Surface-Active Agents/chemistry , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Calixarenes/chemistry , Calixarenes/metabolism , Calixarenes/pharmacology , Calixarenes/therapeutic use , Cell Line , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Extracellular Vesicles/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Indoles/chemistry , Indoles/metabolism , Indoles/pharmacology , Indoles/therapeutic use , Inflammation , Integrins/metabolism , Macrocyclic Compounds/metabolism , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/therapeutic use , Macrophages/drug effects , Macrophages/metabolism , Mice , NF-kappa B/metabolism , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Organometallic Compounds/pharmacology , Organometallic Compounds/therapeutic use , Signal Transduction/drug effects , Surface-Active Agents/metabolism , Surface-Active Agents/pharmacology , Surface-Active Agents/therapeutic use
14.
Angew Chem Int Ed Engl ; 60(36): 19614-19619, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34263514

ABSTRACT

Fluorescent chemosensors are powerful imaging tools in the fields of life sciences and engineering. Based on the principle of supramolecular chemistry, indicator displacement assay (IDA) provides an alternative approach for constructing and optimizing chemosensors, which has the advantages of simplicity, tunability, and modularity. However, the application of IDA in bioimaging continues to face a series of challenges, including interfering signals, background noise, and inconsistent spatial location. Accordingly, we herein report a supramolecular bioimaging strategy of Förster resonance energy transfer (FRET)-assisted IDA by employing macrocyclic amphiphiles as the operating platform. By merging FRET with IDA, the limitations of IDA in bioimaging were addressed. As a proof of concept, the study achieved mitochondria-targeted imaging of adenosine triphosphate in live cells with signal amplification. This study opens a non-covalent avenue for bioimaging with advancements in tunability, generality, and simplicity, apart from the covalent approach.


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Indicators and Reagents/chemistry , Hep G2 Cells , Humans , Macromolecular Substances/analysis , Spectrometry, Fluorescence
15.
Biosens Bioelectron ; 192: 113488, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34265522

ABSTRACT

Screening inhibitors of flavin monooxygenase 3 (FMO3) is very important for treating trimethylamine N-oxide (TMAO) derived thrombotic diseases. Herein, focusing on Xuefu Zhuyu decoction (XFZYD) as a Chinese traditional medicine with antithrombotic efficacy, a facile and label-free fluorescence strategy was developed for evaluating the influence of the bioactive ingredients in XFZYD on FMO3 activity through indicator displacement assay. To this end, the optimized supramolecular host-guest (p-sulfonatocalix[4]arene-oxazine 1) reporter pair and FMO3 catalytic system were exploited to determine the influence of the bioactive compounds in XFZYD on the conversion from TMA to TMAO. From the nine compounds tested, naringin, paeoniflorin, ß-ecdysterone, 18ß-glycyrrhizic acid, amygdalin, albiflorin, and saikosaponin A downregulated FMO3 activity and reduced TMAO biosynthesis. Moreover, molecular docking was successfully applied to simulate the optimal conformation of a receptor-ligand complex between FMO3 and all tested compounds except for ß-ecdysterone. Therefore, this approach provides a novel and promising strategy for screening FMO3 inhibitors from Chinese traditional medicine by supramolecular sensing.


Subject(s)
Biosensing Techniques , Thrombosis , Humans , Methylamines , Molecular Docking Simulation , Oxygenases
16.
Small ; 17(34): e2101499, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34270875

ABSTRACT

To develop durable and low-price catalysts of methanol oxidation to commercialize direct methanol fuel cell, many attempts have been made at fabricating Pt-based hybrids by designing component-, morphology-, facet-, integration-pattern-varied nanostructures, and have achieved considerable successes. However, most of present catalysts still lack robust catalytic durability especially owing to the corrosion of mixed carbon and the poor mechanical stability of catalyst layer. Herein, Te nanowire array is transformed at an air/water interface into a 3D Pt16 Te hierarchical nanostructure via an interface-confined galvanic replacement reaction. As-formed Pt16 Te nanostructure has an asymmetrical architecture composed of nanotroughs and nanopillars, and nanopillars are perpendicular to nanotroughs with a loose arrangement. Pt16 Te hierarchical nanostructure has a "self-supported" feature and, when directly used as the catalyst of methanol electrooxidation, exhibits superior catalytic activity (>four times larger in mass activity than state-of-the-art Pt/C in either acidic or basic solution) and long-term durability (after 500 cycles of cyclic voltammetric measurement, more than 55% of the initial specific activity remains whereas Pt/C only remains 22.2% in acidic solution and almost loses all activity in basic solution). This study fully demonstrates that designing "self-supported" catalyst film may be the next promising step for improving the catalytic performance of Pt-based hybrids.

17.
Adv Mater ; 33(12): e2007719, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33598992

ABSTRACT

Combination chemotherapy refers to the use of multiple drugs to treat cancer. In this therapy, the optimal ratio of the drugs is essential to achieve drug synergism and the desired therapeutic effects. However, most delivery strategies are unable to precisely control the ratio of the drugs during the drug loading and delivery processes, resulting in inefficient synergy and unpredictable efficacy. Herein, a macrocyclic-amphiphile-based self-assembled nanoparticle (MASN) that achieves precise loading and ratiometric delivery of therapeutic combinations is presented. By integrating multiple macrocyclic cavities within a single nanoparticle, the MASN can load multiple drug molecules via the host-guest interaction, and the ratio of the drugs loaded can be predicted with their initial concentrations and characteristic binding affinity. Moreover, MASNs are readily degraded under a hypoxic microenvironment, allowing spontaneous release of the drugs upon reaching tumor tissues. With precise drug loading and controlled release mechanisms, MASNs achieve ratiometric delivery of multiple commercial drugs to tumors, thereby achieving optimal anti-tumor effects. Since the optimal drug ratio of a therapeutic combination can be quickly determined in vitro, MASNs can translate this optimal ratio to the therapeutic benefits in vivo, providing a potential platform for the rapid development of effective combination cancer therapies involving multiple drugs.


Subject(s)
Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Hydrophobic and Hydrophilic Interactions , Macrocyclic Compounds/chemistry , Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Combined Modality Therapy
18.
J Mater Chem B ; 8(45): 10346-10352, 2020 12 07.
Article in English | MEDLINE | ID: mdl-32657318

ABSTRACT

One-dimensional (1D) morphology-unique Au-Ag2S nano-hybrids are achieved by combining the interfacial self-assembly of Ag nanowires, interface-oriented site-specific etching of Ag nanowires with AuCl4-, and the sulfurization of S2-. The as-formed Au-Ag2S nano-hybrid has a trough-like morphology. The wall of the Au-Ag2S nanotrough is a Ag2S/Au/Ag2S trilayer wall, but the Ag2S layer is a Ag2S-rich mixture of Ag2S and Au rather than pure Ag2S because of the diffusion of Au atoms towards Ag2S. The Au-Ag2S nanotrough shows strong absorption in the visible region (400-800 nm) and exhibits a favorable photoelectrochemical (PEC) response, the photocurrent of which is ∼8.5 times larger than that of pure Ag2S. This enhanced PEC response originates from the localized plasmonic resonance effect of Au. Moreover, the PEC biosensor based on the Au-Ag2S nanotroughs shows high sensitivity and selectivity, satisfactory reproducibility, and good stability towards human α-thrombin (TB) detection: a sensitive linear response ranging from 1.00 to 10.00 pmol L-1 and a low detection limit of 0.67 pmol L-1. This study provides a new model for studying the PEC behavior of plasmonic metal/semiconductor materials, and this Au-Ag2S nanotrough may also be useful in the fields of photocatalysis and photovoltaics.


Subject(s)
Biosensing Techniques/methods , Gold/chemistry , Nanostructures/chemistry , Silver Compounds/chemistry , Thrombin/analysis , Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Equipment Design , Humans , Limit of Detection , Photochemical Processes
19.
Chem Asian J ; 15(17): 2742-2748, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32658379

ABSTRACT

Although linker-free Au nanoparticle superstructures (AuNPSTs) have demonstrated to have satisfactory photothermal conversion efficiency owing to their enhanced visible-near-infrared absorption caused by the interparticle coupling, they cannot be used directly for in vivo photothermal therapy (PTT) of cancer because of poor stability. To address this issue, we herein propose a polymer-coating strategy, dressing AuNPST on a poly(dopamine) (PDA) coat, and successfully investigate the in vivo PTT effect of AuNPSTs. By employing Triton X-100 as an emulsifier for the formation of AuNPSTs, dopamine was site-specifically polymerized around each AuNPST by the interaction between -OH of Triton X-100 and -NH2 of dopamine. As-fabricated AuNPST/PDA has a sphere-like shape with an average diameter of ∼106 nm and the PDA shell is about 10 nm PDA thick. The AuNPST/PDA shows enhanced durability to heat, acid, and alkali compared with bare AuNPST. Also, under 808 nm laser irradiation, AuNPST/PDA shows photothermal conversion efficiency of ∼33%, higher than bare AuNPST (∼23%). Significantly, AuNPST/PDA can be used as in-vitro and in-vivo PTT agent and shows excellent therapeutic efficacy for tumor ablation thanks to its enhanced stability and biocompatibility, indicative of its potential practicability in clinical PTT.


Subject(s)
Antineoplastic Agents/pharmacology , Gold/pharmacology , Indoles/pharmacology , Metal Nanoparticles/chemistry , Photothermal Therapy , Polymers/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Female , Gold/chemistry , Humans , Indoles/chemistry , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Particle Size , Polymerization , Polymers/chemistry , Surface Properties
20.
Angew Chem Int Ed Engl ; 59(31): 12684-12688, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32253810

ABSTRACT

The oxidation of antioxidants by oxidizers imposes great challenges to both living organisms and the food industry. Here we show that the host-guest complexation of the carefully designed, positively charged, amphiphilic guanidinocalix[5]arene pentadodecyl ether (GC5A-12C) and negatively charged oleic acid (OA), a well-known cell membrane antioxidant, prevents the oxidation of the complex monolayers at the air-water interface from two potent oxidizers hydroxyl radicals (OH) and singlet delta oxygen (SDO). OH is generated from the gas phase and attacks from the top of the monolayer, while SDO is generated inside the monolayer and attacks amphiphiles from a lateral direction. Field-induced droplet ionization mass spectrometry results have demonstrated that the host-guest complexation achieves steric shielding and prevents both types of oxidation as a result of the tight and "sleeved in" physical arrangement, rather than the chemical reactivity, of the complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...