Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 667: 223-236, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38636224

ABSTRACT

Cyclomatrix polyphosphazenes have attracted widespread attention in the field of polymer flame retardancy. Nevertheless, the optimal manifestation of their distinctive structural attributes and flame-retardant properties necessitates a judicious selection of condensation monomers and synergistic templates during the fabrication of polyphosphazene flame retardants. In our previous studies, it was discovered that when ZIF-67 is functionalized with polyphosphazene, the by-product HCl from phosphazene polycondensation causes etching on ZIF-67. Based on this "synchronous etching" effect, a series of hybrid materials comprising cyclomatrix polyphosphazene and ZIF-67, denoted as ZIF-67@PDS (PDS, poly-(cyclotriphosphazene-co-4,4'-diaminodiphenyl sulfone)), ZIF-67@PBS (PBS, poly-(cyclotriphosphazene-co-Bisphenol A)), and ZIF-67@PZS (PZS, poly-(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)), was synthesized utilizing DDS (4,4'-diaminodiphenyl sulfone), BPA (Bisphenol A), and BPS (4,4'-sulfonyldiphenol) monomers as precursors, respectively. Upon the incorporation of 2.0 wt.% of ZIF-67@PDS, ZIF-67@PBS, and ZIF-67@PZS, the flame retardant and mechanical characteristics of EP composites exhibited marked enhancement. The unique structural characteristics of hybrid and the synergistic effects of Co-P-N contribute to the improvement of comprehensive properties. Compared with pure EP, EP/ZIF-67@PZS has the best enhancement effect, and its pHRR, THR, and TSP decreased by 34.0%, 30.0%, and 40.5%, respectively. In terms of mechanical strength, ZIF-67@PZS also increases the flexural strength of EP by 37.42%. Relying on the "synchronous etching" effect, this study explores and verifies the effective combination of ZIF-67 and different types of polyphosphazenes, and obtains a series of ZIF-67-derived cyclomatrix polyphosphazene hybrids with different morphologies and properties in one step. It provides a new idea and strategy for the simultaneous modification of polyphosphazene materials and the preparation of multifunctional flame retardants in the future.

2.
Carbohydr Polym ; 333: 121980, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494206

ABSTRACT

To enhance char formation of flame retardant epoxy (EP) composites, carboxymethyl ß-cyclodextrin (CM-ß-CD) is employed as an etchant for or ZIF-67 derivatives. In the early stage, etching plays a dominant role. The mismatch in size between CM-ß-CD opening and ZIF-67 pore leads to the stacking of carboxyl cobalt complexes on the shell. When the reaction time is prolonged, crosslinking occurs between carboxyl and hydroxyl groups. Crosslinked CM-ß-CD weakens and eventually stops the etching process. Triethyl phosphate (TEP), an additive to improve flame retardancy, is also absorbed on the shell in this one-pot synthesis. Herin, the synthesis of metal-organic framework (MOF) derivatives can impart multiple functions to MOF. This novel nanohybrid significantly improved flame retardancy of EP composites with only 2.0 wt% loading. The peak heat release rate (pHRR) and total smoke production (TSP) were reduced by 54.8 and 46.9%, respectively. The integrated multi-element system resulted in an expanded and reinforced char layer. This study proposes a simple and precise method for controlling the structure of MOF-carbohydrate hybrids through competition between chemical reactions.

3.
ACS Nano ; 18(8): 6314-6332, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38345595

ABSTRACT

Immune checkpoint blockade (ICB) therapy still suffers from insufficient immune response and adverse effect of ICB antibodies. Chemodynamic therapy (CDT) has been demonstrated to be an effective way to synergize with ICB therapy. However, a low generation rate of reactive oxygen species and poor tumor penetration of CDT platforms still decline the immune effects. Herein, a charge-reversal nanohybrid Met@BF containing both Fe3O4 and BaTiO3 nanoparticles in the core and Metformin (Met) on the surface was fabricated for tumor microenvironment (TME)- and ultrasound (US)-activated piezocatalysis-chemodynamic immunotherapy of cancer. Interestingly, Met@BF had a negative charge in blood circulation, which was rapidly changed into positive when exposed to acidic TME attributed to quaternization of tertiary amine in Met, facilitating deep tumor penetration. Subsequently, with US irradiation, Met@BF produced H2O2 based on piezocatalysis of BaTiO3, which greatly enhanced the Fenton reaction of Fe3O4, thus boosting robust antitumor immune response. Furthermore, PD-L1 expression was inhibited by the local released Met to further augment the antitumor immune effect, achieving effective inhibitions for both primary and metastatic tumors. Such a combination of piezocatalysis-enhanced chemodynamic therapy and Met-mediated deep tumor penetration and downregulation of PD-L1 provides a promising strategy to augment cancer immunotherapy.


Subject(s)
Metformin , Nanoparticles , Neoplasms , Humans , B7-H1 Antigen , Hydrogen Peroxide , Immunotherapy , Neoplasms/drug therapy , Metformin/pharmacology , Tumor Microenvironment , Cell Line, Tumor
4.
Polymers (Basel) ; 15(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37765565

ABSTRACT

Polyurethane elastomer (PUE), which is widely used in coatings for construction, transportation, electronics, aerospace, and other fields, has excellent physical properties. However, polyurethane elastomers are flammable, which limits their daily use, so the flame retardancy of polyurethane elastomers is very important. Reactive flame retardants have the advantages of little influence on the physical properties of polymers and low tendency to migrate out. Due to the remarkable needs of non-halogenated flame retardants, phosphorus flame retardant has gradually stood out as the main alternative. In this review, we focus on the fire safety of PUE and provide a detailed overview of the current molecular design and mechanisms of reactive phosphorus-containing, as well as P-N synergistic, flame retardants in PUE. From the structural characteristics, several basic aspects of PUE are overviewed, including thermal performance, combustion performance, and mechanical properties. In addition, the perspectives on the future advancement of phosphorus-containing flame-retarded polyurethane elastomers (PUE) are also discussed. Based on the past research, this study provides prospects for the application of flame-retarded PUE in the fields of self-healing materials, bio-based materials, wearable electronic devices, and solid-state electrolytes.

5.
ACS Appl Mater Interfaces ; 14(43): 49326-49337, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36270017

ABSTRACT

The direct coordination between polyhedral oligomeric silsesquioxane (POSS) and Co forms an assembly of nanoparticles with low specific surface area and leads to a poor dispersion state in the epoxy resin matrix, resulting in unsatisfactory flame-retardant efficiency. Metal-organic frameworks (MOFs), for instance, ZIF-67, provide not only the cobalt element but also the porous framework that endows the nanocomposite of MOFs and POSS with high specific surface area and abundant Co sites in the silica skeleton. Herein, ZIF-67 is hybridized with octacarboxyl POSS, resulting in the removal of the alkaline ligand to form novel metal POSS-organic frameworks (MPOFs). The size differences for organic groups and silica nanocages of POSS vs. micropores of ZIF-67 gave rise to a reverse click reaction, reforming octavinyl POSS isolated on the outer surface of the Co complex, which could be further modified by a phosphorous flame retardant using an addition reaction. The obtained MPOFs-P with 2 wt % loading in epoxy resin could improve the limiting oxygen index value of the composites to 27.0% and pass the V-0 rating in the UL-94 test. Meanwhile, the peaks of the heat release rate and especially the total smoke production were reduced by 46.6 and 25.2%, respectively. The robust char layer reduces the emission of toxic gas CO by 39.8%. The above epoxy product with promising flame retardancy also improved mechanical properties, thanks to the filler with a unique nanostructure. The ingenious work offers enlightenment for the hybridization method of MOFs and POSS to fabricate a multielement flame-retardant system for epoxy resin with high efficacy.

6.
J Org Chem ; 87(21): 14374-14383, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36194643

ABSTRACT

A convenient and mild protocol for the gold-catalyzed intermolecular coupling of o-alkynylphenols with haloalkynes to give vinyl benzofurans is reported. In this work, the gold catalyst SIPrAuCl and the co-catalyst NaBARF would corporately promote the intramolecular cyclization of the o-alkynylphenol to benzofuran, and then a selective hydroarylation of benzofuran to haloalkyne was catalyzed by the same catalysts. Computational studies suggest that the hydroarylation process takes place via a concerted nucleophilic attack pathway of the benzofuran to the C2 carbon of the activated haloalkyne, and reveal the original driving force of this hydroarylation process.


Subject(s)
Carbon , Gold , Cyclization , Molecular Structure , Catalysis
7.
Org Lett ; 24(31): 5657-5662, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35900372

ABSTRACT

A transition-metal-free catalytic system was designed to address the dehydrative cross-coupling of unactivated primary/secondary alcohols with amines/amides under environmentally benign conditions. Mg2+ and counteranion (PF6-) worked synergistically to realize C-OH bond cleavage and concomitant C-N bond formation. A wide range of allylic alcohols and amines/amides were tolerated well in this transformation, which allowed C-N bond construction with high efficiency.

8.
Colloids Surf B Biointerfaces ; 211: 112242, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34929482

ABSTRACT

We have modified the surface of poly(lactic acid) (PLA) by bromination in the presence of N-bromosuccinimide (NBS) under UV irradiation. This new approach to impart functionality to the surface does not effect the bulk of the material. Brominated PLA surfaces served as initiators for atom-transfer radical polymerization (SI-ATRP) of 2-(methacryloyloxy)ethyl]trimethylammonium chloride, a quaternary ammonium methacrylate (QMA). Grafting of poly(QMA) brushes rendered PLA films hydrophilic and these films displayed a three-order of magnitude increase in antimicrobial efficacy against Gram-negative bacteria such as Escherichia coli as compared to unmodified PLA. The two-step strategy described here to modify PLA surface represents a useful route to modified PLA materials for biomedical and antimicrobial packaging applications.


Subject(s)
Polyesters , Polymers , Polymerization , Surface Properties
9.
Org Lett ; 23(13): 5235-5240, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34156254

ABSTRACT

An organic photoredox-catalyzed dehydroxylative trifluoromethylation of allylic alcohols was developed in an environmentally benign manner. In this reaction, the readily available CF3SO2Na was selected as the trifluoromethylation reagent. The in situ generated byproduct SO2 was reutilized to activate C-OH bond, which enabled this dehydroxylative trifluoromethylation to be performed conveniently. A variety of multifunctionalized CF3-allylic compounds were obtained in high yields and excellent stereoselectivity.

10.
J Am Chem Soc ; 143(3): 1562-1569, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33439016

ABSTRACT

Self-healing polymer electrolytes are reported with light-switchable conductivity based on dynamic N-donor ligand-containing diarylethene (DAE) and multivalent Ni2+ metal-ion coordination. Specifically, a polystyrene polymer grafted with poly(ethylene glycol-r-DAE)acrylate copolymer side chains was effectively cross-linked with nickel(II) bis(trifluoromethanesulfonimide) (Ni(TFSI)2) salts to form a dynamic network capable of self-healing with fast exchange kinetics under mild conditions. Furthermore, as a photoswitching compound, the DAE undergoes a reversible structural and electronic rearrangement that changes the binding strength of the DAE-Ni2+ complex under irradiation. This can be observed in the DAE-containing polymer electrolyte where irradiation with UV light triggers an increase in the resistance of solid films, which can be recovered with subsequent visible light irradiation. The increase in resistance under UV light irradiation indicates a decrease in ion mobility after photoswitching, which is consistent with the stronger binding strength of ring-closed DAE isomers with Ni2+. 1H-15N heteronuclear multiple-bond correlation nuclear magnetic resonance (HMBC NMR) spectroscopy, continuous wave electron paramagnetic resonance (cw EPR) spectroscopy, and density functional theory (DFT) calculations confirm the increase in binding strength between ring-closed DAE with metals. Rheological and in situ ion conductivity measurements show that these polymer electrolytes efficiently heal to recover their mechanical properties and ion conductivity after damage, illustrating potential applications in smart electronics.

11.
J Am Chem Soc ; 142(21): 9843-9849, 2020 05 27.
Article in English | MEDLINE | ID: mdl-32421319

ABSTRACT

A versatile and scalable strategy is reported for the rapid generation of block copolymer libraries spanning a wide range of compositions starting from a single parent copolymer. This strategy employs automated and operationally simple chromatographic separation that is demonstrated to be applicable to a variety of block copolymer chemistries on multigram scales with excellent mass recovery. The corresponding phase diagrams exhibit increased compositional resolution compared to those traditionally constructed via multiple, individual block copolymer syntheses. Increased uniformity and lower dispersity of the chromatographic libraries lead to differences in the location of order-order transitions and observable morphologies, highlighting the influence of dispersity on the self-assembly of block copolymers. Significantly, this separation technique greatly simplifies the exploration of block copolymer phase space across a range of compositions, monomer pairs, and molecular weights (up to 50000 amu), producing materials with increased control and homogeneity when compared to conventional strategies.


Subject(s)
Automation , Polymers/isolation & purification , Molecular Structure , Molecular Weight , Polymers/chemistry
12.
Biomacromolecules ; 20(9): 3366-3374, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31429537

ABSTRACT

Polylactide (PL) co-polymers substituted with pendant azide groups (azido-PL) were synthesized by the nucleophilic conjugate addition of 3-azido-1-propanethiol to a co-polymer of PL containing α,ß-unsaturated ester units, poly(lactide-co-methylene glycolide) (ene-PL) that is obtained from the base-promoted dehydrochlorination of poly(lactide-co-chlorolactide) (chloro-PL). Alternatively, azido-PL was prepared by the treatment of chloro-PL with 3-azido-1-propanethiol without isolation of the ene-PL intermediate. The azido-PL was functionalized by copper-catalyzed [3 + 2] cycloaddition reactions with four alkynes: propargyl 4-methoxybenzoate, N,N,N-trimethyl-N-propargylammonium bromide, N,N-dimethyl-N-octyl-N-propargylammonium bromide, and N,N,N-trioctyl-N-propargylammonium bromide. Polymer adducts with N,N,N-trioctyl-N-propargylammonium bromide displayed potent antimicrobial activity both in suspension and as a polymer film.


Subject(s)
Anti-Infective Agents/chemistry , Azides/chemistry , Bacteria/drug effects , Polyesters/chemistry , Ammonium Compounds/chemistry , Anti-Infective Agents/chemical synthesis , Azides/chemical synthesis , Bacteria/pathogenicity , Biodegradable Plastics/chemical synthesis , Biodegradable Plastics/chemistry , Click Chemistry , Polyesters/chemical synthesis , Substrate Specificity
13.
ChemSusChem ; 11(6): 1121-1131, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29359405

ABSTRACT

The pretreatment of lignocellulosic biomass plays a vital role in the conversion of cellulosic biomass to bioethanol, especially for softwoods and hardwoods. Although many pretreatment technologies have been reported so far, only a few pretreatment methods can handle large woodchips directly. To improve the efficiency of pretreatment, existing technologies require the grinding of the wood into small particles, which is an energy-consuming process. Herein, for the first time, we report a simple, effective, and low-temperature (≈100 °C) process for the pretreatment of hardwood (HW) and softwood (SW) chips directly by using a catalytic system of FeCl3 /NaNO3 (FCSNRC). The pretreatment experiments were conducted systematically, and a conversion of 71.53 and 70.66 % of cellulose to sugar could be obtained for the direct use of large HW and SW chips. The new method reported here overcomes one of the critical barriers in biomass-to-biofuel conversion, and both grinding and thermal energies can be reduced significantly.

14.
J Am Chem Soc ; 139(43): 15401-15406, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29052422

ABSTRACT

Bicyclo[3.3.1]nonane (BCN) polycations were synthesized by the reaction of the bivalent electrophile thiabicyclo[3.3.1]nonane dinitrate with a series of simple bis(pyridine) nucleophiles. Oligomers of moderate chain length were formed in a modular approach that tolerated the inclusion of functionalized and variable-length linkers between the pyridine units. Post-polymerization modification via copper-catalyzed azide-alkyne cyloaddition was enabled by the inclusion of terminal alkyne groups in these monomers. Most of the resulting polymers, new members of the polyionene class, inhibited the growth of bacteria at the µg/mL level and killed static bacterial cells at polymer concentrations of tens of ng/mL, with moderate to good selectivity with respect to lysis of red blood cells. While resistance to the BCN polymers was developed only very slowly over multiple passages, a degradable version of the polycation was observed to make E. coli cells more susceptible to other quaternary ammonium based antimicrobials. Solid substrates (glass and crystalline silicon) covalently functionalized with a representative BCN polycation were also able to repetitively kill bacteria in solution at high rates and with cleaning by simple sonication between exposures.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cycloparaffins/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Polyamines/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cell Survival/drug effects , Cycloparaffins/chemical synthesis , Cycloparaffins/chemistry , Dose-Response Relationship, Drug , Gram-Negative Bacteria/cytology , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/cytology , Gram-Positive Bacteria/growth & development , Microbial Sensitivity Tests , Molecular Structure , Polyamines/chemical synthesis , Polyamines/chemistry , Polyelectrolytes , Structure-Activity Relationship
16.
Chem Asian J ; 7(7): 1533-7, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22511612

ABSTRACT

A new domino reaction for Nazarov reagents: An efficient approach was developed for the construction of highly functionalized conjugated 2,3-dihydrofuran skeletons. Nazarov reagents were used for the first time in a phosphine-catalyzed domino reaction and successfully used to construct five-membered ring compounds using alcohol as the solvent. DFT calculations indicate that alcohol is essential for the catalysis of the [1,2]-proton transfer.


Subject(s)
Furans/chemical synthesis , Naphthalenes/chemistry , Phosphines/chemistry , Alcohols/chemistry , Catalysis , Furans/chemistry , Naphthalenes/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...