Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 84(18)2018 09 15.
Article in English | MEDLINE | ID: mdl-29980555

ABSTRACT

Campylobacter is a leading foodborne pathogen, and poultry products are major vehicles for human disease. However, determinants impacting Campylobacter colonization in poultry remain poorly understood, especially with turkeys. Here, we used a paired-farm design to concurrently investigate Campylobacter colonization and strain types in two turkey breeds (Hybrid and Nicholas) at two farms in eastern North Carolina. One farm (the Teaching Animal Unit [TAU]) was a university teaching unit at least 40 km from commercial turkey farms, while the other (SIB) was a commercial farm in an area with a high density of turkey farms. Day-old birds were obtained from the same breeder flock and hatchery and placed at TAU and SIB on the same day. Birds were marked to identify turkey breed and then commingled on each farm. TAU birds became colonized 1 week later than SIB and had lower initial Campylobacter levels in the cecum. Interestingly, Campylobacter genotypes and antimicrobial resistance profiles differed markedly between the farms. Most TAU isolates were resistant only to tetracycline, whereas multidrug-resistant isolates predominated at SIB. Multilocus sequence typing revealed that no Campylobacter genotypes were shared between TAU and SIB. A bovine-associated genotype (sequence type 1068 [ST1068]) predominated in Campylobacter coli from TAU, while SIB isolates had genotypes commonly encountered in commercial turkey production in the region. One multidrug-resistant Campylobacter jejuni strain (ST1839) showed significant association with one of the two turkey breeds. The findings highlight the need to further characterize the impact of farm-specific factors and host genetics on antimicrobial resistance and genotypes of C. jejuni and C. coli that colonize turkeys.IMPORTANCE Colonization of poultry with Campylobacter at the farm level is complex, poorly understood, and critically linked to contamination of poultry products, which is known to constitute a leading risk factor for human campylobacteriosis. Here, we investigated the use of a paired-farm design under standard production conditions and in the absence of experimental inoculations to assess potential impacts of farm and host genetics on prevalence, antimicrobial resistance and genotypes of Campylobacter in commercial turkeys of two different breeds. Data suggest impacts of farm proximity to other commercial turkey farms on the onset of colonization, genotypes, and antimicrobial resistance profiles of Campylobacter colonizing the birds. Furthermore, the significant association of a specific multidrug-resistant Campylobacter jejuni strain with turkeys of one breed suggests colonization partnerships at the Campylobacter strain-turkey breed level. The study design avoids potential pitfalls associated with experimental inoculations, providing novel insights into the dynamics of turkey colonization with Campylobacter in actual farm ecosystems.


Subject(s)
Anti-Bacterial Agents/pharmacology , Campylobacter Infections/veterinary , Campylobacter/isolation & purification , Drug Resistance, Bacterial , Poultry Diseases/microbiology , Turkeys/microbiology , Animals , Campylobacter/drug effects , Campylobacter/genetics , Campylobacter/growth & development , Campylobacter Infections/economics , Campylobacter Infections/microbiology , Farms/economics , Genotype , Models, Biological , Multilocus Sequence Typing , North Carolina , Poultry Diseases/economics
2.
Avian Pathol ; 47(1): 100-107, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28911234

ABSTRACT

Clinicopathological diagnosis of mucopolysaccharidosis type IIIB (MPS IIIB; Sanfilippo syndrome B), an inherited autosomal recessive lysosomal storage disease, as a cause of losses in a commercial emu flock and screening breeders using a mutation-specific DNA test are described. Between 2012 and 2015, ∼5-10 juvenile emus from a few weeks to several months of age developed progressive neurological signs and died while others in the flock remained healthy. Necropsy of two affected siblings revealed multiple sites of haemorrhage, cytoplasmic periodic acid-Schiff and Luxol fast blue-positive inclusions in neurons, and aggregates of foamy macrophages in visceral organs. Affected emus were homozygous for the two-base deletion in the α-N-acetylglucosaminidase gene that causes MPS IIIB in emus. Mutation-specific DNA tests for MPS IIIB in emus were developed. Screening blood samples from 78 breeding emus revealed 14 (18%; 9 males, 4 females, and 1 unknown gender) carriers; an overall 0.09 mutant α-N-acetylglucosaminidase allele frequency. A "test and cull male carriers" programme, in which carrier males are culled but carrier females are retained, was proposed to avoid breeding affected emus together, ultimately eliminating the disease from future broods, and preserving the gene pool with as much breeding stock as possible. Molecular genetic diagnostic tests are simple, precise, and permit screening of all breeders for the mutant allele in any flock and can be used to eliminate MPS IIIB-related emu losses through informed breeding.


Subject(s)
Bird Diseases/genetics , Dromaiidae , Mucopolysaccharidosis III/veterinary , Acetylglucosaminidase/genetics , Acetylglucosaminidase/metabolism , Animals , Bird Diseases/pathology , Female , Gene Deletion , Gene Expression Regulation, Enzymologic , Genetic Predisposition to Disease , Genotype , Male , Mucopolysaccharidosis III/genetics , Mucopolysaccharidosis III/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...