Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
Add more filters











Publication year range
1.
Proc Natl Acad Sci U S A ; 121(26): e2316422121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38900790

ABSTRACT

Nitrous oxide is a potent greenhouse gas whose production is catalyzed by nitric oxide reductase (NOR) members of the heme-copper oxidoreductase (HCO) enzyme superfamily. We identified several previously uncharacterized HCO families, four of which (eNOR, sNOR, gNOR, and nNOR) appear to perform NO reduction. These families have novel active-site structures and several have conserved proton channels, suggesting that they might be able to couple NO reduction to energy conservation. We isolated and biochemically characterized a member of the eNOR family from the bacterium Rhodothermus marinus and found that it performs NO reduction. These recently identified NORs exhibited broad phylogenetic and environmental distributions, greatly expanding the diversity of microbes in nature capable of NO reduction. Phylogenetic analyses further demonstrated that NORs evolved multiple times independently from oxygen reductases, supporting the view that complete denitrification evolved after aerobic respiration.


Subject(s)
Nitric Oxide , Oxidation-Reduction , Oxidoreductases , Phylogeny , Nitric Oxide/metabolism , Oxidoreductases/metabolism , Oxidoreductases/genetics , Archaea/metabolism , Archaea/genetics , Rhodothermus/metabolism , Rhodothermus/enzymology , Rhodothermus/genetics , Evolution, Molecular , Bacteria/metabolism , Bacteria/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry
3.
Comput Struct Biotechnol J ; 20: 5430-5439, 2022.
Article in English | MEDLINE | ID: mdl-36212541

ABSTRACT

Nicotinamide nucleotide transhydrogenases are integral membrane proteins that utilizes the proton motive force to reduce NADP+ to NADPH while converting NADH to NAD+. Atomic structures of various transhydrogenases in different ligand-bound states have become available, and it is clear that the molecular mechanism involves major conformational changes. Here we utilized hydrogen/deuterium exchange mass spectrometry (HDX-MS) to map ligand binding sites and analyzed the structural dynamics of E. coli transhydrogenase. We found different allosteric effects on the protein depending on the bound ligand (NAD+, NADH, NADP+, NADPH). The binding of either NADP+ or NADPH to domain III had pronounced effects on the transmembrane helices comprising the proton-conducting channel in domain II. We also made use of cyclic ion mobility separation mass spectrometry (cyclic IMS-MS) to maximize coverage and sensitivity in the transmembrane domain, showing for the first time that this technique can be used for HDX-MS studies. Using cyclic IMS-MS, we increased sequence coverage from 68 % to 73 % in the transmembrane segments. Taken together, our results provide important new insights into the transhydrogenase reaction cycle and demonstrate the benefit of this new technique for HDX-MS to study ligand binding and conformational dynamics in membrane proteins.

4.
Biochim Biophys Acta Bioenerg ; 1863(8): 148907, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35944661

ABSTRACT

The heme­copper oxidoreductase (HCO) superfamily is a large superfamily of terminal respiratory enzymes that are widely distributed across the three domains of life. The superfamily includes biochemically diverse oxygen reductases and nitric oxide reductases that are pivotal in the pathways of aerobic respiration and denitrification. The adaptation of HCOs to use quinol as the electron donor instead of cytochrome c has significant implication for the respiratory flexibility and energetic efficiency of the respiratory chains that include them. In this work, we explore the adaptation of this scaffold to two different electron donors, cytochromes c and quinols, with extensive sequence analysis of these enzymes from publicly available datasets. Our work shows that quinol oxidation evolved independently within the HCO superfamily at least seven times. Enzymes from only two of these independently evolved clades have been biochemically well-characterized. Combining structural modeling with sequence analysis, we identify putative quinol binding sites in each of the novel quinol oxidases. Our analysis of experimental and modeling data suggests that the quinol binding site appears to have evolved at the same structural position within the scaffold more than once.


Subject(s)
Heme , Hydroquinones , Copper , Cytochromes c , Heme/metabolism , Hydroquinones/chemistry , Nitric Oxide/metabolism , Oxidoreductases/metabolism , Oxygen/metabolism
5.
Sci Rep ; 11(1): 21234, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34707181

ABSTRACT

Membrane bound nicotinamide nucleotide transhydrogenase (TH) catalyses the hydride transfer from NADH to NADP+. Under physiological conditions, this reaction is endergonic and must be energized by the pmf, coupled to transmembrane proton transport. Recent structures of transhydrogenase holoenzymes suggest new mechanistic details, how the long-distance coupling between hydride transfer in the peripheral nucleotide binding sites and the membrane-localized proton transfer occurs that now must be tested experimentally. Here, we provide protocols for the efficient expression and purification of the Escherichia coli transhydrogenase and its reconstitution into liposomes, alone or together with the Escherichia coli F1F0 ATP synthase. We show that E. coli transhydrogenase is a reversible enzyme that can also work as a NADPH-driven proton pump. In liposomes containing both enzymes, NADPH driven H+-transport by TH is sufficient to instantly fuel ATP synthesis, which adds TH to the pool of pmf generating enzymes. If the same liposomes are energized with ATP, NADPH production by TH is stimulated > sixfold both by a pH gradient or a membrane potential. The presented protocols and results reinforce the tight coupling between hydride transfer in the peripheral nucleotide binding sites and transmembrane proton transport and provide powerful tools to investigate their coupling mechanism.


Subject(s)
Bacterial Proton-Translocating ATPases/metabolism , Energy Transfer , Escherichia coli Proteins/metabolism , NADP Transhydrogenases/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proton-Translocating ATPases/chemistry , Escherichia coli Proteins/chemistry , Ion Transport , Liposomes/metabolism , NADP Transhydrogenases/chemistry
6.
Science ; 373(6560): 1225-1229, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34516790

ABSTRACT

Understanding the mechanistic coupling of molecular oxygen reduction and proton pumping for adenosine triphosphate synthesis during cellular respiration is the primary goal of research on heme-copper oxidases­the terminal complex in the membrane-bound electron transport chain. Cleavage of the oxygen-oxygen bond by the heme-copper oxidases forms the key intermediate PM, which initiates proton pumping. This intermediate is now experimentally defined by variable-temperature, variable-field magnetic circular dichroism spectroscopy on a previously unobserved excited state feature associated with its heme iron(IV)-oxo center. These data provide evidence that the iron(IV)-oxo in PM is magnetically coupled to both a copper(II) and a cross-linked tyrosyl radical in the active site. These results provide new insight into the oxygen-oxygen bond cleavage and proton-pumping mechanisms of heme-copper oxidases.


Subject(s)
Copper/chemistry , Cytochrome b Group/chemistry , Electron Transport Complex IV/chemistry , Escherichia coli Proteins/chemistry , Hemeproteins/chemistry , Oxidoreductases/chemistry , Proton Pumps/chemistry , Catalytic Domain
7.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34417297

ABSTRACT

Two independent structures of the proton-pumping, respiratory cytochrome bo3 ubiquinol oxidase (cyt bo3 ) have been determined by cryogenic electron microscopy (cryo-EM) in styrene-maleic acid (SMA) copolymer nanodiscs and in membrane scaffold protein (MSP) nanodiscs to 2.55- and 2.19-Å resolution, respectively. The structures include the metal redox centers (heme b, heme o3 , and CuB), the redox-active cross-linked histidine-tyrosine cofactor, and the internal water molecules in the proton-conducting D channel. Each structure also contains one equivalent of ubiquinone-8 (UQ8) in the substrate binding site as well as several phospholipid molecules. The isoprene side chain of UQ8 is clamped within a hydrophobic groove in subunit I by transmembrane helix TM0, which is only present in quinol oxidases and not in the closely related cytochrome c oxidases. Both structures show carbonyl O1 of the UQ8 headgroup hydrogen bonded to D75I and R71I In both structures, residue H98I occupies two conformations. In conformation 1, H98I forms a hydrogen bond with carbonyl O4 of the UQ8 headgroup, but in conformation 2, the imidazole side chain of H98I has flipped to form a hydrogen bond with E14I at the N-terminal end of TM0. We propose that H98I dynamics facilitate proton transfer from ubiquinol to the periplasmic aqueous phase during oxidation of the substrate. Computational studies show that TM0 creates a channel, allowing access of water to the ubiquinol headgroup and to H98I.


Subject(s)
Cytochrome b Group/chemistry , Cytochrome b Group/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Heme/metabolism , Phospholipids/metabolism , Proton Pumps , Ubiquinone/metabolism , Binding Sites , Cryoelectron Microscopy , Heme/chemistry , Oxidation-Reduction , Protein Conformation
8.
ISME J ; 15(12): 3534-3548, 2021 12.
Article in English | MEDLINE | ID: mdl-34145390

ABSTRACT

Cytochrome bd-type oxygen reductases (cytbd) belong to one of three enzyme superfamilies that catalyze oxygen reduction to water. They are widely distributed in Bacteria and Archaea, but the full extent of their biochemical diversity is unknown. Here we used phylogenomics to identify three families and several subfamilies within the cytbd superfamily. The core architecture shared by all members of the superfamily consists of four transmembrane helices that bind two active site hemes, which are responsible for oxygen reduction. While previously characterized cytochrome bd-type oxygen reductases use quinol as an electron donor to reduce oxygen, sequence analysis shows that only one of the identified families has a conserved quinol binding site. The other families are missing this feature, suggesting that they use an alternative electron donor. Multiple gene duplication events were identified within the superfamily, resulting in significant evolutionary and structural diversity. The CydAA' cytbd, found exclusively in Archaea, is formed by the co-association of two superfamily paralogs. We heterologously expressed CydAA' from Caldivirga maquilingensis and demonstrated that it performs oxygen reduction with quinol as an electron donor. Strikingly, CydAA' is the first isoform of cytbd containing only b-type hemes shown to be active when isolated from membranes, demonstrating that oxygen reductase activity in this superfamily is not dependent on heme d.


Subject(s)
Archaea/genetics , Archaeal Proteins/genetics , Cytochrome b Group/genetics , Electron Transport Chain Complex Proteins/genetics , Oxidoreductases , Archaea/enzymology , Evolution, Molecular , Oxidation-Reduction , Oxidoreductases/genetics , Oxygen
9.
Microbiol Spectr ; 9(1): e0013521, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34190594

ABSTRACT

Bacterial alternative complex III (ACIII) catalyzes menaquinol (MKH2) oxidation, presumably fulfilling the role of cytochromes bc1/b6f in organisms that lack these enzymes. The molecular mechanism of ACIII is unknown and so far the complex has remained inaccessible for genetic modifications. The recently solved cryo-electron microscopy (cryo-EM) structures of ACIII from Flavobacterium johnsoniae, Rhodothermus marinus, and Roseiflexus castenholzii revealed no structural similarity to cytochrome bc1/b6f and there were variations in the heme-containing subunits ActA and ActE. These data implicated intriguing alternative electron transfer paths connecting ACIII with its redox partner, and left the contributions of ActE and the terminal domain of ActA to the catalytic mechanism unclear. Here, we report genetic deletion and complementation of F. johnsoniae actA and actE and the functional implications of such modifications. Deletion of actA led to the loss of activity of cytochrome aa3 (a redox partner of ACIII in this bacterium), which confirmed that ACIII is the sole source of electrons for this complex. Deletion of actE did not impair the activity of cytochrome aa3, revealing that ActE is not required for electron transfer between ACIII and cytochrome aa3. Nevertheless, absence of ActE negatively impacted the cell growth rate, pointing toward another, yet unidentified, function of this subunit. Possible explanations for these observations, including a proposal of a split in electron paths at the ActA/ActE interface, are discussed. The described system for genetic manipulations in F. johnsoniae ACIII offers new tools for studying the molecular mechanism of operation of this enzyme. IMPORTANCE Energy conversion is a fundamental process of all organisms, realized by specialized protein complexes, one of which is alternative complex III (ACIII). ACIII is a functional analogue of well-known mitochondrial complex III, but operates according to a different, still unknown mechanism. To understand how ACIII interacts functionally with its protein partners, we developed a genetic system to mutate the Flavobacterium johnsoniae genes encoding ACIII subunits. Deletion and complementation of heme-containing subunits revealed that ACIII is the sole source of electrons for cytochrome aa3 and that one of the redox-active subunits (ActE) is dispensable for electron transfer between these complexes. This study sheds light on the operation of the supercomplex of ACIII and cytochrome aa3 and suggests a division in the electron path within ACIII. It also shows a way to manipulate protein expression levels for application in other members of the Bacteroidetes phylum.


Subject(s)
Bacterial Proteins/metabolism , Electron Transport Complex III/metabolism , Electron Transport Complex IV/metabolism , Flavobacterium/metabolism , Bacterial Proteins/genetics , Cryoelectron Microscopy , Cytochromes b6/genetics , Cytochromes b6/metabolism , Electron Transport , Electron Transport Complex III/genetics , Electron Transport Complex IV/genetics , Flavobacterium/genetics , Flavobacterium/ultrastructure , Oxidation-Reduction , Protein Subunits/genetics , Protein Subunits/metabolism
10.
Biochim Biophys Acta Bioenerg ; 1862(8): 148433, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33932366

ABSTRACT

Respiration is carried out by a series of membrane-bound complexes in the inner mitochondrial membrane or in the cytoplasmic membrane of bacteria. Increasing evidence shows that these complexes organize into larger supercomplexes. In this work, we identified a supercomplex composed of cytochrome (cyt.) bc1 and aa3-type cyt. c oxidase in Rhodobacter sphaeroides. We purified the supercomplex using a His-tag on either of these complexes. The results from activity assays, native and denaturing PAGE, size exclusion chromatography, electron microscopy, optical absorption spectroscopy and kinetic studies on the purified samples support the formation and coupled quinol oxidation:O2 reduction activity of the cyt. bc1-aa3 supercomplex. The potential role of the membrane-anchored cyt. cy as a component in supercomplexes was also investigated.


Subject(s)
Cell Membrane/metabolism , Electron Transport Complex III/metabolism , Electron Transport Complex IV/metabolism , Hydroquinones/metabolism , Rhodobacter sphaeroides/enzymology , Electron Transport , Electron Transport Complex III/chemistry , Electron Transport Complex IV/chemistry , Kinetics , Oxidation-Reduction
11.
Biochim Biophys Acta Bioenerg ; 1862(9): 148450, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34022199

ABSTRACT

Cytochrome ba3 from Thermus thermophilus belongs to the B family of heme-copper oxidases and pumps protons across the membrane with an as yet unknown mechanism. The K channel of the A family heme-copper oxidases provides delivery of a substrate proton from the internal water phase to the binuclear heme-copper center (BNC) during the reductive phase of the catalytic cycle, while the D channel is responsible for transferring both substrate and pumped protons. By contrast, in the B family oxidases there is no D-channel and the structural equivalent of the K channel seems to be responsible for the transfer of both categories of protons. Here we have studied the effect of the T315V substitution in the K channel on the kinetics of membrane potential generation coupled to the oxidative half-reaction of the catalytic cycle of cytochrome ba3. The results suggest that the mutated enzyme does not pump protons during the reaction of the fully reduced form with molecular oxygen in a single turnover. Specific inhibition of proton pumping in the T315V mutant appears to be a consequence of inability to provide rapid (τ ~ 100 µs) reprotonation of the internal transient proton donor(s) of the K channel. In contrast to the A family, the K channel of the B-type oxidases is necessary for the electrogenic transfer of both pumped and substrate protons during the oxidative half-reaction of the catalytic cycle.


Subject(s)
Cytochrome b Group/metabolism , Electron Transport Complex IV/metabolism , Mutant Proteins/metabolism , Potassium Channels/metabolism , Proton Pumps/metabolism , Thermus thermophilus/metabolism , Heme/metabolism , Models, Molecular , Mutation , Oxidation-Reduction , Oxidoreductases/metabolism , Oxygen/metabolism , Protein Binding , Protein Conformation
12.
Biochemistry (Mosc) ; 86(1): 105-122, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33705286

ABSTRACT

The effect of Zn2+ on the P-side of proteoliposomes containing membrane-incorporated Rhodobacter sphaeroides cytochrome c oxidase was investigated by the time-resolved electrometrics following a single electron injection into the enzyme prepared in the F state. The wild-type enzyme was examined along with the two mutants, N139D and D132N. All obtained data indicate that the primary effect of Zn2+ added from the P-side of the membrane is slowing of the pumped proton release from the proton loading site (PLS) to the bulk aqueous phase on the P-side of the membrane. The results strongly suggest the presence of two pathways by which the pumped proton can exit the protein from the PLS and of two separate binding sites for Zn2+. A model is presented to explain the influence of Zn2+ on the kinetics of membrane-potential generation by the wild-type COX, as well as by the N139D and D132N mutants.


Subject(s)
Electron Transport Complex IV/metabolism , Rhodobacter sphaeroides/enzymology , Zinc/metabolism , Cations, Divalent , Kinetics , Proton Pumps , Rhodobacter sphaeroides/metabolism , Zinc/chemistry
13.
J Biochem ; 169(4): 387-394, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33289521

ABSTRACT

A set of C43(DE3) and BL21(DE3) Escherichia coli host strains that are auxotrophic for various amino acids is briefly reviewed. These strains require the addition of a defined set of one or more amino acids in the growth medium, and have been specifically designed for overproduction of membrane or water-soluble proteins selectively labelled with stable isotopes, such as 2H, 13C and 15N. The strains described here are available for use and have been deposited into public strain banks. Although they cannot fully eliminate the possibility of isotope dilution and mixing, metabolic scrambling of the different amino acid types can be minimized through a careful consideration of the bacterial metabolic pathways. The use of a suitable auxotrophic expression host strain with an appropriately isotopically labelled growth medium ensures high levels of isotope labelling efficiency as well as selectivity for providing deeper insight into protein structure-function relationships.


Subject(s)
Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Escherichia coli/genetics , Protein Domains , Structure-Activity Relationship
14.
ACS Infect Dis ; 6(11): 2979-2993, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33085463

ABSTRACT

Cis-prenyltransferases such as undecaprenyl diphosphate synthase (UPPS) and decaprenyl diphosphate synthase (DPPS) are essential enzymes in bacteria and are involved in cell wall biosynthesis. UPPS and DPPS are absent in the human genome, so they are of interest as targets for antibiotic development. Here, we screened a library of 750 compounds from National Cancer Institute Diversity Set V for the inhibition of Mycobacterium tuberculosis DPPS and found 17 hits, and then IC50s were determined using dose-response curves. Compounds were tested for growth inhibition against a panel of bacteria, for in vivo activity in a Staphylococcus aureus/Caenorhabditis elegans model, and for mammalian cell toxicity. The most active DPPS inhibitor was the dicarboxylic acid redoxal (compound 10), which also inhibited undecaprenyl diphosphate synthase (UPPS) as well as farnesyl diphosphate synthase. 10 was active against S. aureus, Clostridiodes difficile, Bacillus anthracis Sterne, and Bacillus subtilis, and there was a 3.4-fold increase in IC50 on addition of a rescue agent, undecaprenyl monophosphate. We found that 10 was also a weak protonophore uncoupler, leading to the idea that it targets both isoprenoid biosynthesis and the proton motive force. In an S. aureus/C. elegans in vivo model, 10 reduced the S. aureus burden 3 times more effectively than did ampicillin.


Subject(s)
Dimethylallyltranstransferase , Animals , Anti-Bacterial Agents/pharmacology , Caenorhabditis elegans , Dimethylallyltranstransferase/genetics , Enzyme Inhibitors/pharmacology , Humans , Staphylococcus aureus
15.
EMBO Rep ; 21(5): e45832, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32202364

ABSTRACT

The success of Staphylococcus aureus as a pathogen is due to its capability of fine-tuning its cellular physiology to meet the challenges presented by diverse environments, which allows it to colonize multiple niches within a single vertebrate host. Elucidating the roles of energy-yielding metabolic pathways could uncover attractive therapeutic strategies and targets. In this work, we seek to determine the effects of disabling NADH-dependent aerobic respiration on the physiology of S. aureus. Differing from many pathogens, S. aureus has two type-2 respiratory NADH dehydrogenases (NDH-2s) but lacks the respiratory ion-pumping NDHs. Here, we show that the NDH-2s, individually or together, are not essential either for respiration or growth. Nevertheless, their absence eliminates biofilm formation, production of α-toxin, and reduces the ability to colonize specific organs in a mouse model of systemic infection. Moreover, we demonstrate that the reason behind these phenotypes is the alteration of the fatty acid metabolism. Importantly, the SaeRS two-component system, which responds to fatty acids regulation, is responsible for the link between NADH-dependent respiration and virulence in S. aureus.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Mice , NAD , Staphylococcus aureus/genetics , Virulence
16.
Biochim Biophys Acta Bioenerg ; 1861(5-6): 148175, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32061652

ABSTRACT

Cytochrome bd, a component of the prokaryotic respiratory chain, is important under physiological stress and during pathogenicity. Electrons from quinol substrates are passed on via heme groups in the CydA subunit and used to reduce molecular oxygen. Close to the quinol binding site, CydA displays a periplasmic hydrophilic loop called Q-loop that is essential for quinol oxidation. In the carboxy-terminal part of this loop, CydA from Escherichia coli and other proteobacteria harbors an insert of ~60 residues with unknown function. In the current work, we demonstrate that growth of the multiple-deletion strain E. coli MB43∆cydA (∆cydA∆cydB∆appB∆cyoB∆nuoB) can be enhanced by transformation with E. coli cytochrome bd-I and we utilize this system for assessment of Q-loop mutants. Deletion of the cytochrome bd-I Q-loop insert abolished MB43∆cydA growth recovery. Swapping the cytochrome bd-I Q-loop for the Q-loop from Geobacillus thermodenitrificans or Mycobacterium tuberculosis CydA, which lack the insert, did not enhance the growth of MB43∆cydA, whereas swapping for the Q-loop from E. coli cytochrome bd-II recovered growth. Alanine scanning experiments identified the cytochrome bd-I Q-loop insert regions Ile318-Met322, Gln338-Asp342, Tyr353-Leu357, and Thr368-Ile372 as important for enzyme functionality. Those mutants that completely failed to recover growth of MB43∆cydA also lacked oxygen consumption activity and heme absorption peaks. Moreover, we were not able to isolate cytochrome bd-I from these inactive mutants. The results indicate that the cytochrome bd Q-loop exhibits low plasticity and that the Q-loop insert in E. coli is needed for complete, stable, assembly of cytochrome bd-I.


Subject(s)
Cytochrome b Group/chemistry , Cytochrome b Group/metabolism , Electron Transport Chain Complex Proteins/chemistry , Electron Transport Chain Complex Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Alanine/genetics , Amino Acid Sequence , Cell Membrane/metabolism , Cytochrome b Group/isolation & purification , Electron Transport Chain Complex Proteins/isolation & purification , Escherichia coli/growth & development , Escherichia coli Proteins/isolation & purification , Heme/metabolism , Mutagenesis/genetics , Mutant Proteins/chemistry , Mutant Proteins/isolation & purification , Mutant Proteins/metabolism , Oxidoreductases/isolation & purification , Oxygen Consumption , Protein Structure, Secondary , Structure-Activity Relationship
17.
Proc Natl Acad Sci U S A ; 117(2): 872-876, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31888984

ABSTRACT

Virtually all proton-pumping terminal respiratory oxygen reductases are members of the heme-copper oxidoreductase superfamily. Most of these enzymes use reduced cytochrome c as a source of electrons, but a group of enzymes have evolved to directly oxidize membrane-bound quinols, usually menaquinol or ubiquinol. All of the quinol oxidases have an additional transmembrane helix (TM0) in subunit I that is not present in the related cytochrome c oxidases. The current work reports the 3.6-Å-resolution X-ray structure of the cytochrome aa3 -600 menaquinol oxidase from Bacillus subtilis containing 1 equivalent of menaquinone. The structure shows that TM0 forms part of a cleft to accommodate the menaquinol-7 substrate. Crystals which have been soaked with the quinol-analog inhibitor HQNO (N-oxo-2-heptyl-4-hydroxyquinoline) or 3-iodo-HQNO reveal a single binding site where the inhibitor forms hydrogen bonds to amino acid residues shown previously by spectroscopic methods to interact with the semiquinone state of menaquinone, a catalytic intermediate.


Subject(s)
Bacillus subtilis/metabolism , Copper/chemistry , Electron Transport Complex IV/chemistry , Heme/chemistry , Hydroquinones/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Cytochrome b Group/chemistry , Electron Transport , Hydrogen Bonding , Models, Molecular , Naphthols/metabolism , Oxidoreductases , Protein Conformation , Protein Subunits/chemistry , Proton Pumps/chemistry , Proton Pumps/metabolism , Terpenes/metabolism , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
18.
Biochim Biophys Acta Bioenerg ; 1861(2): 148132, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31816290

ABSTRACT

Sulfide:quinone oxidoreductase (SQR) is a monotopic membrane flavoprotein present in all domains of life, with multiple roles including sulfide detoxification, homeostasis and energy generation by providing electrons to respiratory or photosynthetic electron transport chains. A type III SQR from the hyperthermophilic archeon Caldivirga maquilingensis has been previously characterized, and its C-terminal amphipathic helices were demonstrated to be responsible for membrane binding. Here, the oligomeric state of this protein was experimentally evaluated by size exclusion chromatography, native gels and crosslinking, and found to be a monomer-dimer-trimer equilibrium. Remarkably, mutant and truncated variants unable to bind to the membrane are able to maintain their oligomeric association. Thus, unlike other related monotopic membrane proteins, the region involved in membrane binding does not influence oligomerization. Furthermore, by studying heterodimers between the WT and mutants, it was concluded that membrane binding requires an oligomer with at least two copies of the protein with intact C-terminal amphipathic helices. A structural homology model of the C. maquilingensis SQR was used to define the flavin- and quinone-binding sites. CmGly12, CmGly16, CmAla77 and CmPro44 were determined to be important for flavin binding. Unexpectedly, CmGly299 is only important for quinone reduction despite its proximity to bound FAD. CmPhe337 and CmPhe362 are also important for quinone binding apparently by direct interaction with the quinone ring, whereas CmLys359, postulated to hydrogen bond to the quinone, seems to have a more structural role. The results presented differentiate the Type III CmSQR from some of its counterparts classified as Type I, II and V.


Subject(s)
Archaeal Proteins/chemistry , Cell Membrane/enzymology , NAD(P)H Dehydrogenase (Quinone)/chemistry , Protein Multimerization , Thermoproteaceae/enzymology , Archaeal Proteins/metabolism , Binding Sites , NAD(P)H Dehydrogenase (Quinone)/metabolism , Protein Structure, Secondary
19.
Biochemistry ; 58(45): 4559-4569, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31644263

ABSTRACT

Cytochrome bo3, one of three terminal oxygen reductases in the aerobic respiratory chain of Escherichia coli, has been well characterized as a ubiquinol oxidase. The ability of cytochrome bo3 to catalyze the two-electron oxidation of ubiquinol-8 requires the enzyme to stabilize the one-electron oxidized ubisemiquinone species that is a transient intermediate in the reaction. Cytochrome bo3 has been shown recently to also utilize demethylmenaquinol-8 as a substrate that, along with menaquinol-8, replaces ubiquinol-8 when E. coli is grown under microaerobic or anaerobic conditions. In this work, we show that its steady-state turnover with 2,3-dimethyl-1,4-naphthoquinol, a water-soluble menaquinol analogue, is just as efficient as with ubiquinol-1. Using pulsed electron paramagnetic resonance spectroscopy, we demonstrate that the same residues in cytochrome bo3 that stabilize the semiquinone state of ubiquinone also stabilize the semiquinone state of menaquinone, with the hydrogen bond strengths and the distribution of unpaired spin density accommodated for the different substrate. Catalytic function with menaquinol is more tolerant of mutations at the active site than with ubiquinol. A mutation of one of the stabilizing residues (R71H in subunit I) that eliminates the ubiquinol oxidase activity of cytochrome bo3 does not abolish activity with soluble menaquinol analogues.


Subject(s)
Cytochrome b Group/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Plastoquinone/analogs & derivatives , Ubiquinone/analogs & derivatives , Vitamin K 2/metabolism , Binding Sites , Cytochrome b Group/chemistry , Escherichia coli/chemistry , Escherichia coli Proteins/chemistry , Kinetics , Plastoquinone/metabolism , Protein Binding , Ubiquinone/metabolism
20.
Biochim Biophys Acta Bioenerg ; 1860(11): 148080, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31520616

ABSTRACT

The crystal structure of the enzyme previously characterized as a type-2 NADH:menaquinone oxidoreductase (NDH-2) from Thermus thermophilus has been solved at a resolution of 2.9 Šand revealed that this protein is, in fact, a coenzyme A-disulfide reductase (CoADR). Coenzyme A (CoASH) replaces glutathione as the major low molecular weight thiol in Thermus thermophilus and is maintained in the reduced state by this enzyme (CoADR). Although the enzyme does exhibit NADH:menadione oxidoreductase activity expected for NDH-2 enzymes, the specific activity with CoAD as an electron acceptor is about 5-fold higher than with menadione. Furthermore, the crystal structure contains coenzyme A covalently linked Cys44, a catalytic intermediate (Cys44-S-S-CoA) reduced by NADH via the FAD cofactor. Soaking the crystals with menadione shows that menadione can bind to a site near the redox active FAD, consistent with the observed NADH:menadione oxidoreductase activity. CoADRs from other species were also examined and shown to have measurable NADH:menadione oxidoreductase activity. Although a common feature of this family of enzymes, no biological relevance is proposed. The CoADR from T. thermophilus is a soluble homodimeric enzyme. Expression of the recombinant TtCoADR at high levels in E. coli results in a small fraction that co-purifies with the membrane fraction, which was used previously to isolate the enzyme wrongly identified as a membrane-bound NDH-2. It is concluded that T. thermophilus does not contain an authentic NDH-2 component in its aerobic respiratory chain.


Subject(s)
Coenzyme A/metabolism , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/metabolism , Thermus thermophilus/enzymology , Coenzyme A/chemistry , Escherichia coli , Models, Molecular , Recombinant Proteins , Static Electricity , Vitamin K 3/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL