Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732185

ABSTRACT

Herpes simplex virus (HSV) infections are highly widespread among humans, producing symptoms ranging from ulcerative lesions to severe diseases such as blindness and life-threatening encephalitis. At present, there are no vaccines available, and some existing antiviral treatments can be ineffective or lead to adverse effects. As a result, there is a need for new anti-HSV drugs. In this report, the in vitro anti-HSV effect of 9,9'-norharmane dimer (nHo-dimer), which belongs to the ß-carboline (ßC) alkaloid family, was evaluated. The dimer exhibited no virucidal properties and did not impede either the attachment or penetration steps of viral particles. The antiviral effect was only exerted under the constant presence of the dimer in the incubation media, and the mechanism of action was found to involve later events of virus infection. Analysis of fluorescence lifetime imaging data showed that the nHo-dimer internalized well into the cells when present in the extracellular incubation medium, with a preferential accumulation into perinuclear organelles including mitochondria. After washing the host cells with fresh medium free of nHo-dimer, the signal decreased, suggesting the partial release of the compound from the cells. This agrees with the observation that the antiviral effect is solely manifested when the alkaloid is consistently present in the incubation media.


Subject(s)
Antiviral Agents , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chlorocebus aethiops , Humans , Vero Cells , Animals , Simplexvirus/drug effects , Simplexvirus/physiology , Herpes Simplex/drug therapy , Herpes Simplex/virology , Carbolines/pharmacology , Carbolines/chemistry , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/physiology , Harmine/pharmacology , Harmine/chemistry , Harmine/analogs & derivatives
2.
Biomater Sci ; 9(7): 2608-2619, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33595000

ABSTRACT

Photothermal therapy (PTT) is a noninvasive treatment for cancer relying on the incorporation of NIR-light absorbing nanomaterials into cells, which upon illumination release heat causing thermally induced cell death. We prove that irradiation of aqueous suspensions of poly(vinylpyrrolidone)-coated silver nanoplates (PVPAgNP) or PVPAgNP in HeLa cells with red or NIR lasers causes a sizeable photothermal effect, which in cells can be visualized with the temperature sensing fluorophore Rhodamine B (RhB) using spinning disk confocal fluorescence microscopy or fluorescence lifetime imaging. Upon red-light irradiation of cells that were incubated with both, RhB and PVPAgNP at concentrations with no adverse effects on cell viability, a substantial heat release is detected. Initiation of cell death by photothermal effect is observed by positive signals of fluorescent markers for early and late apoptosis. Surprisingly, a new nanomaterial-assisted cell killing mode is operating when PVPAgNP-loaded HeLa cells are excited with moderate powers of fs-pulsed NIR light. Small roundish areas are generated with bright and fast (<1 ns) decaying emission, which expand fast and destroy the whole cell in seconds. This characteristic emission is assigned to efficient optical breakdown initiation around the strongly absorbing PVPAgNP leading to plasma formation that spreads fast through the cell.


Subject(s)
Photothermal Therapy , Silver , HeLa Cells , Humans , Light , Microscopy, Fluorescence
3.
Photochem Photobiol ; 94(6): 1159-1166, 2018 11.
Article in English | MEDLINE | ID: mdl-29978491

ABSTRACT

Riboflavin (Rf) is an endogenous photosensitizer, which can participate in Type I and Type II processes. We have recently shown that the yield of the triplet excited states of Rf is enhanced in the presence of pectin-coated silver nanoparticles (Pec@AgNP) due to formation of a complex between Rf and Pec@AgNP (Rf-Pec@AgNP). Consequently, under aerobic conditions, the amounts of singlet molecular oxygen and superoxide radical anion generated are also larger in the presence of the nanoparticles. This result made us suspect that the nanoparticles could have a beneficial effect in Rf-based PDT. To prove this hypothesis, we here compared the photodamage in HeLa cells incubated with Rf in the presence and in the absence of Pec@AgNP applying several optical assays. We used fluorescence imaging of irradiated HeLa cells incubated with Annexin V and propidium iodide to evaluate the occurrence of apoptosis/necrosis, the reduction of the tetrazolium dye MTT to formazan and neutral red uptake to prove cell viability, as well as synchrotron infrared microscopy of single cells to evaluate possible structural changes of DNA and nuclear proteins. The enhanced photodamage observed in the presence of Pec@AgNP seems to indicate that Rf enters into the cells complexed with the nanoparticles.


Subject(s)
Apoptosis/drug effects , Metal Nanoparticles/chemistry , Photosensitizing Agents/pharmacology , Riboflavin/pharmacology , Silver/chemistry , Apoptosis/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , HeLa Cells , Humans , Kinetics , Light , Metal Nanoparticles/ultrastructure , Oxygen/chemistry , Oxygen/metabolism , Pectins/chemistry , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Riboflavin/chemistry , Single-Cell Analysis , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism , Superoxides/chemistry , Superoxides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL